scholarly journals On the Comparison between Compact Finite Difference and Pseudospectral Approaches for Solving Similarity Boundary Layer Problems

2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
P. G. Dlamini ◽  
S. S. Motsa ◽  
M. Khumalo

We introduce two methods based on higher order compact finite differences for solving boundary layer problems. The methods called compact finite difference relaxation method (CFD-RM) and compact finite difference quasilinearization method (CFD-QLM) are an alternative form of the spectral relaxation method (SRM) and spectral quasilinearization method (SQLM). The SRM and SQLM are Chebyshev pseudospectral-based methods which have been successfully used to solve boundary layer problems. The main objective of this paper is to give a comparison of the compact finite difference approach against the pseudo-spectral approach in solving similarity boundary layer problems. In particular, we seek to identify the most accurate and computationally efficient method for solving systems of boundary layer equations in fluid mechanics. The results of the two approaches are comparable in terms of accuracy for small systems of equations. For larger systems of equations, the proposed compact finite difference approaches are more accurate than the spectral-method-based approaches.

2018 ◽  
Vol 387 ◽  
pp. 461-473 ◽  
Author(s):  
K. Gangadhar ◽  
D. Vijaya Kumar ◽  
S. Mohammed Ibrahim ◽  
Oluwole Daniel Makinde

In this study we use a new spectral relaxation method to investigate an axisymmetric law laminar boundary layer flow of a viscous incompressible non-Newtonian Eyring-Powell fluid and heat transfer over a heated disk with thermal radiation and Newtonian heating. The transformed boundary layer equations are solved numerically using the spectral relaxation method that has been proposed for the solution of nonlinear boundary layer equations. Numerical solutions are obtained for the local wall temperature, the local skin friction coefficient, as well as the velocity and temperature profiles. We show that the proposed technique is an efficient numerical algorithm with assured convergence that serves as an alternative to common numerical methods for solving nonlinear boundary value problems. We show that the convergence rate of the spectral relaxation method is significantly improved by using method in conjunction with the successive over-relaxation method. It is observed that CPU time is reduced in SOR method compare with SRM method.


Author(s):  
M. ABDULHADI

An approximate calculation of the boundary layer parameters around a long cylinder of Rankine-oval section is carried out. The calculations are undertaken as a step-by-step analysis using the finite-difference form of the integral formulations of the boundary layer equations. The separation line of the boundary layer for an oval of thickness = 0.2 is located in the rear portion of the oval in a plane making an angle of 137° with the direction of the flow.


1972 ◽  
Vol 1 (3) ◽  
pp. 146-152
Author(s):  
S. D. Katotakis ◽  
J. Vlachopoulos

A straight-forward and general finite-difference solution of the boundary layer equations is presented. Several problems are examined for laminar flow conditions. These include velocity and temperature boundary layers over a flat plate, linearly retarded flows and several cases of suction or injection. The results obtained are in excellent agreement with existing accurate solutions. It appears that any kind of steady, two-dimensional boundary layer problem can be solved thus with accuracy and speed.


2016 ◽  
Vol 8 (3) ◽  
pp. 68
Author(s):  
Mohd Taib Shatnawi

<p><span lang="EN-US">In this paper, the so-called residual-power-series (RPS) method is presented for solving nonlinear boundary-layer equations. The RPS method provides a single unified treatment for the linear and nonlinear terms in the equations. The accuracy and efficiency of the RPS method is demonstrated for both a single and a system of two coupled boundary-layer equations on an unbounded domain.</span></p>


Sign in / Sign up

Export Citation Format

Share Document