scholarly journals Atmospheric Water Monitoring by Using Ground-Based GPS during Heavy Rains Produced by TPV and SWV

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Guoping Li ◽  
Jia Deng

The time series of precipitable water (PW) in 30 min intervals has been determined through experimentation and operational application of a ground-based global positioning system (GPS) network in Chengdu Plain, which is used for precise and reliable meteorological research. This study is the first to apply PW to the southwest vortex (SWV) and heavy rain events by using the data from an intensive SWV experiment conducted in summer 2010. The PW derived from the local ground-based GPS network was used in the monitoring and analysis of heavy rain caused by the SWV and the Tibetan Plateau vortex (TPV). Results indicate that an increase in GPS precipitable water (GPS-PW) occurs prior to the development of the TPV and SWV; rainfall occurs mainly during high levels of GPS-PW. The evolution features of GPS-PW in rainfall process caused by different weather systems over the Tibetan Plateau (TP) also differ. These results indicate the reference values for operational applications of GPS-PW data in short-term forecasting and nowcasting of high-impact weather in addition to further investigation of heavy rain caused by the TPV, SWV, and other severe weather systems over the TP.

Nature ◽  
2021 ◽  
Vol 596 (7872) ◽  
pp. 353-356
Author(s):  
Licai Deng ◽  
Fan Yang ◽  
Xiaodian Chen ◽  
Fei He ◽  
Qili Liu ◽  
...  

AbstractOn Earth’s surface, there are only a handful of high-quality astronomical sites that meet the requirements for very large next-generation facilities. In the context of scientific opportunities in time-domain astronomy, a good site on the Tibetan Plateau will bridge the longitudinal gap between the known best sites1,2 (all in the Western Hemisphere). The Tibetan Plateau is the highest plateau on Earth, with an average elevation of over 4,000 metres, and thus potentially provides very good opportunities for astronomy and particle astrophysics3–5. Here we report the results of three years of monitoring of testing an area at a local summit on Saishiteng Mountain near Lenghu Town in Qinghai Province. The altitudes of the potential locations are between 4,200 and 4,500 metres. An area of over 100,000 square kilometres surrounding Lenghu Town has a lower altitude of below 3,000 metres, with an extremely arid climate and unusually clear local sky (day and night)6. Of the nights at the site, 70 per cent have clear, photometric conditions, with a median seeing of 0.75 arcseconds. The median night temperature variation is only 2.4 degrees Celsius, indicating very stable local surface air. The precipitable water vapour is lower than 2 millimetres for 55 per cent of the night.


2018 ◽  
Vol 31 (3) ◽  
pp. 945-962 ◽  
Author(s):  
Weixing Zhang ◽  
Yidong Lou ◽  
Jinfang Huang ◽  
Fu Zheng ◽  
Yunchang Cao ◽  
...  

Abstract The dense ground-based GPS provides a good tool to study water vapor distribution and multiscale variations, especially for linear trends on the interannual scale and short-term variations on the diurnal scale. It can also serve as an independent data source to evaluate performances of reanalyses. In this study, the 6-hourly precipitable water (PW) products at more than 260 GPS stations over China from 1999 to 2015 were analyzed and eight commonly used reanalyses, including 20CR version 2 (20CRv2), CFSR, ERA-Interim, JRA-25, JRA-55, MERRA, NCEP–NCAR, and NCEP–DOE AMIP-II, were evaluated. The climatological annual mean GPS PW distribution over China roughly shows a decreasing trend from southeast to northwest, with the largest annual and semiannual amplitudes in the lower reaches of the Yangtze River and mideastern China, respectively, and the smallest values in the Tibetan Plateau and southwestern China. All reanalyses (except for 20CRv2) can generally reproduce well the climatological annual mean PW (within 20%), annual amplitudes (within 20%), and semiannual amplitudes (within 20% except in the tropical monsoon region), but they all show wet biases in the Tibetan Plateau. Diurnal variation amplitudes reproduced by all reanalysis products are smaller than amplitudes estimated from GPS observations over China as a whole, and none of the reanalyses can capture the diurnal phases correctly. PW linear trends at most GPS stations in the recent 16 years are insignificant or with absolute values smaller than 0.10 mm yr−1. However, because of the assimilation of the unhomogenized radiosonde humidity data, most reanalyses show artificial decreasing PW trends (except in 20CRv2 and CFSR).


2007 ◽  
Vol 10 (3) ◽  
pp. 181-185 ◽  
Author(s):  
Guoping Li ◽  
Dingfa Huang ◽  
Biquan Liu ◽  
Jiaona Chen

2018 ◽  
Vol 10 (9) ◽  
pp. 1420 ◽  
Author(s):  
Jianbin Su ◽  
Haishen Lü ◽  
Yonghua Zhu ◽  
Xiaoyi Wang ◽  
Guanghua Wei

As the Global Precipitation Measurement (GPM) Core Observatory satellite continues its mission, the latest GPM-era satellite-based precipitation estimations, including Global Satellite Mapping of Precipitation (GSMaP) and Integrated Multi-satellitE Retrievals for the GPM (IMERG), have been released. However, few studies have systematically evaluated these products over mainland China, although this is very important for both the end users and data developers. To these ends, the final-run uncalibrated IMERG V05 (V05UC), gauge-calibrated IMERG V05 (V05C) and IMERG V04 (V04C), and latest gauge-calibrated GSMaP V7 (GSMaP) are systematically evaluated and mutually compared against a merged product obtained from the China Meteorological Data Service Center via continuous statistical indices and an error decomposition analysis technology suite over mainland China from April 2014 to December 2016 at a 3 hourly scale and 0.1° × 0.1° resolution. The results show that, irrespective of the slight overestimation in the southeast and underestimation in the northern Tibetan Plateau, all four GSPEs could generally capture the spatial patterns of precipitation over mainland China. Meanwhile, the overall quality of the GSMaP is slightly superior to the IMERG products in east and south China; however, it also suffers from an overestimation of light rain and an underestimation of heavy rain. Such overestimation and underestimation are primarily from a large false precipitation in light rain and a negative hit bias in heavy rain, respectively. The latest IMERG V05 products have not shown significant improvement over the earlier version (V04C) in east and south China, but the calibrated V05C can best reproduce the probability density function in terms of precipitation intensity. Furthermore, V04C shows remarkable underestimation over the Tibetan Plateau, while this shortcoming has been resolved significantly in V05C. Alternately, the effects of the gauge calibration algorithm (GCA) used in IMERG are examined by comparison of V05UC and V05C. The results indicate that GCA cannot reduce the missed precipitation, and even enlarges the false precipitation over some regions. This reveals that GCA cannot effectively alleviate the bias resulting from the rain areas’ delineation and raining or not-raining detection. In addition, all of the products’ performance can be improved, particularly in the dry climate and high-latitude regions. This is a systematic estimation for GSPEs, providing deep insight into the characteristics and sources of error, and it could be valuable as a reference for both algorithm developers and data users, as well as for associated global products and various applications.


2019 ◽  
Vol 131 (1006) ◽  
pp. 125001 ◽  
Author(s):  
Xuan Qian ◽  
Yongqiang Yao ◽  
Lei Zou ◽  
Hongshuai Wang ◽  
Jia Yin

Sign in / Sign up

Export Citation Format

Share Document