scholarly journals The Study of Cooling Process on Runout Table by Simulation Method

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Anan Suebsomran ◽  
Suthep Butdee

This research aims to achieving the effective cooling parameter on the runout table (ROT) of strip steel in hot rolling process. The 2-dimensional transient heat conduction is developed including the external force convection and heat source due to translational motion. The material property, boundary, and initial condition are defined and bounded to model geometry. The strip velocity, cooling water temperature, and external fluid velocity are chosen for the influent parameters during cooling process at ROT. To find the optimality of cooling operating requirement, simulation study is conducted throughout this research. To reach the objective of optimal cooling consumption at ROT, temperature distribution in the strip steel during cooling governs by the form of heat transfer equation. To solve 2-dimensional transient heat conduction by numerical methods, the backward difference formula (BDF) applies to discretization of partial differentiation equation (PDE). The parallel sparse direct linear solver (PARDISO) and conjugate gradients method are comparatively applied to computation in linear algebraic equation. The simulation studies are divided into 12 case studies with three variations subjected to cooling conditions at ROT. From simulation results, the range of such three variations can be identified in relation to economic cooling system and desired quality of products.

Author(s):  
Vlastimil Nejtek ◽  
Jiří Fryč ◽  
Josef Los

Measuring in laboratory conditions was performed with the aim to collect a sufficient quantity of measured data for the qualified application of flat-plate coolers in measuring under real operating conditions. The cooling water tank was filled with tap water; the second tank was filled with water at a temperature equivalent to freshly milked milk. At the same time, pumps were activated that delivered the liquids into the flat-plate cooler where heat energy was exchanged between the two media. Two containers for receiving the run-out liquid were placed on the outputs from the cooler; here, temperature was measured with electronic thermometer and volume was measured with calibrated graduated cylinder. Flow rate was regulated both on the side of the cooling fluid and on the side of the cooled liquid by means of a throttle valve. The measurements of regulated flow-rates were repeated several times and the final values were calculated using arithmetic average. To calculate the temperature coefficient and the amount of brought-in and let-out heat, the volume measured in litres was converted to weight unit. The measured values show that the volume of exchanged heat per weight unit increases with the decreasing flow-rate. With the increasing flow-rate on the throttled side, the flow-rate increases on the side without the throttle valve. This phenomenon is caused by pressure increase during throttling and by the consequent increase of the diameter of channels in the cooler at the expense of the opposite channels of the non-throttled part of the circuit. If the pressure is reduced, there is a pressure decrease on the external walls of opposite channels and the flow-rate increases again. This feature could be utilised in practice: a pressure regulator on one side could regulate the flow-rate on the other side. The operating measurement was carried out on the basis of the results of laboratory measurements. The objective was to determine to what extent the use of flat-plate coolers under specific conditions results in cost reduction and improved milk cooling process. The measurement was performed in several cycles. The first measurement took place in the existing system without the use of the flat-plate cooler. The volume of drawn milk was monitored throughout the milking process along with its temperature, temperature in the tank and electricity consumption of the cooling system. At the second stage, the flat-plate cooler was introduced into the cooling process, which was followed by monitoring the milk and cooling water volume, their temperature, temperature in the tank and electricity consumption of the cooling system. The measured data indicate considerable power cost reduction if upstream flat-plate coolers are applied.


1974 ◽  
Author(s):  
Kozo Katayama ◽  
Akio Saito ◽  
Nariyoshi Kobayashi

Author(s):  
Almério José Venâncio Pains Soares Pamplona ◽  
Karoliny Freitas Silva ◽  
Cláudio Bucar Filho ◽  
Joel Vasco

2020 ◽  
pp. 75-86
Author(s):  
Sergio Antonio Camargo ◽  
Lauro Correa Romeiro ◽  
Carlos Alberto Mendes Moraes

The present article aimed to test changes in cooling water temperatures of males, present in aluminum injection molds, to reduce failures due to thermal fatigue. In order to carry out this work, cooling systems were studied, including their geometries, thermal gradients and the expected theoretical durability in relation to fatigue failure. The cooling system tests were developed with the aid of simulations in the ANSYS software and with fatigue calculations, using the method of Goodman. The study of the cooling system included its geometries, flow and temperature of this fluid. The results pointed to a significant increase in fatigue life of the mold component for the thermal conditions that were proposed, with a significant increase in the number of cycles, to happen failures due to thermal fatigue.


1988 ◽  
Vol 53 (4) ◽  
pp. 788-806
Author(s):  
Miloslav Hošťálek ◽  
Jiří Výborný ◽  
František Madron

Steady state hydraulic calculation has been described of an extensive pipeline network based on a new graph algorithm for setting up and decomposition of balance equations of the model. The parameters of the model are characteristics of individual sections of the network (pumps, pipes, and heat exchangers with armatures). In case of sections with controlled flow rate (variable characteristic), or sections with measured flow rate, the flow rates are direct inputs. The interactions of the network with the surroundings are accounted for by appropriate sources and sinks of individual nodes. The result of the calculation is the knowledge of all flow rates and pressure losses in the network. Automatic generation of the model equations utilizes an efficient (vector) fixing of the network topology and predominantly logical, not numerical operations based on the graph theory. The calculation proper utilizes a modification of the model by the method of linearization of characteristics, while the properties of the modified set of equations permit further decrease of the requirements on the computer. The described approach is suitable for the solution of practical problems even on lower category personal computers. The calculations are illustrated on an example of a simple network with uncontrolled and controlled flow rates of cooling water while one of the sections of the network is also a gravitational return flow of the cooling water.


Sign in / Sign up

Export Citation Format

Share Document