scholarly journals Computational Nutraceutics: Chemical Reactivity Properties of the Flavonoid Naringin by Means of Conceptual DFT

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Jorge Ignacio Martínez-Araya ◽  
Guillermo Salgado-Morán ◽  
Daniel Glossman-Mitnik

The M06 family of density functionals has been assessed for the calculation of the molecular structure and properties of the Naringin molecule. The chemical reactivity descriptors have been calculated through Conceptual DFT. The active sites for nucleophilic and electrophilic attacks have been chosen by relating them to the Fukui function indices and the dual descriptorf(2)(r). A comparison between the descriptors calculated through vertical energy values and those arising from the Koopmans' theorem approximation has been performed in order to check for the validity of the last procedure.

2020 ◽  
Vol 72 (4) ◽  
pp. 162-174
Author(s):  
Gheorghe Duca ◽  
Natalia Bolocan

The chemical reactivity descriptors have been calculated through Molecular Electron Density Theory encompassing Conceptual DFT. The validity of �Koopmans� theorem in DFT� (KID) has been assessed by a comparison between the global descriptors (electronegativity, total hardness, and global electrophilicity) calculated through vertical energy values and those arising from the HOMO and LUMO values. These results suggest that the KID procedure is valid and may be used, in conjunction with the B3LYP/3-611G(d, p) level of theory in further studies of related compounds in the aqueous medium. The active sites for nucleophilic and electrophilic attacks have been identified and verified using the local reactivity descriptors: the dual descriptor, the electrophilic and nucleophilic Parr functions, the local reactivity difference index Rk and MEP maps. Obtained results suggest that the antioxidant/antiradical power of investigated compounds may be explained by the highest ambiphilic activation of the oxygen atoms of the hydroxyl groups in the ene-diol moiety.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Mónica Alvarado-González ◽  
Norma Flores-Holguín ◽  
Daniel Glossman-Mitnik

The M06 family of density functionals has been assessed for the calculation of the molecular structure and properties of the chlorophyll a molecule. Besides the determination of the molecular structures, the UV-Vis spectra have been computed using TD-DFT in the presence of a solvent, and the results were compared with the experimental data available. The chemical reactivity descriptors have been calculated through conceptual DFT. The active sites for nucleophilic and electrophilic attacks have been chosen by relating them to the Fukui function indices. A comparison between the descriptors calculated through vertical energy values and those arising from the Koopmans' theorem approximation have been performed in order to check for the validity of the last procedure.


2009 ◽  
Vol 113 (30) ◽  
pp. 8660-8667 ◽  
Author(s):  
Carlos Cárdenas ◽  
Nataly Rabi ◽  
Paul W. Ayers ◽  
Christophe Morell ◽  
Paula Jaramillo ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Norma Flores-Holguín ◽  
Juan Frau ◽  
Daniel Glossman-Mitnik

Five density functionals, CAM-B3LYP, LC-ωHPBE, MN12SX, N12SX, and ωB97XD, in connection with the Def2TZVP basis set were assessed together with the SMD solvation model for the calculation of the molecular properties, chemical reactivities, and solubilities of some pigments derived from astaxanthin, β-cryptoxanthin, fucoxanthin, myxol, siphonaxanthin, siphonein, and zeaxanthin marine carotenoids in the presence of different solvents (hexane, methanol, ethanol, and water). All the chemical reactivity descriptors for the systems were calculated via conceptual density functional theory (CDFT). Finally, the potential bioavailability and druggability as well as the bioactivity scores for the marine carotenoid pigments were predicted through different methodologies already reported in the literature, which have been previously validated during the study of other natural products obtained from marine sources.


2017 ◽  
Vol 16 (01) ◽  
pp. 1750006 ◽  
Author(s):  
Juan Frau ◽  
Francisco Muñoz ◽  
Daniel Glossman-Mitnik

The validity of the “Koopmans in DFT” (KID) procedure have been assessed by means of the calculation of several Conceptual DFT reactivity descriptors calculated through a [Formula: see text]SCF procedure compared with the results of the HOMO and LUMO energies of the neutral system. Three resveratrol derivatives were considered: cis- and trans-piceid and resveratrone-6-O-[Formula: see text] glucoside. The Minnesota latest family of density functionals have been considered for the calculations in connection with water as a solvent simulated with the SMD parametrization. It is shown that the range-separated hybrids MN12SX and N12SX fulfill the KID procedure with great accuracy.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Juan Frau ◽  
Daniel Glossman-Mitnik

This study evaluated a fixed long-range corrected range-separated hybrid (RSH) density functional associated with the Def2TZVP basis set alongside the SMD solvation model for the computation of the structure, molecular properties, and chemical reactivity of the M8 intermediate melanoidin pigment in the presence of water and dioxane. The preference of the active sites pertinent to radical, nucleophilic, and electrophilic attacks is made through linking them with the electrophilic and nucleophilic Parr functions, Fukui function indices, and condensed dual descriptor which are chemical reactivity descriptors that arise from conceptual density functional theory. The study confirmed the results from previous works showing that the MN12SX density functional is the most appropriate in predicting the chemical reactivity of this molecule in both solvents.


Author(s):  
Kouadio Valery Bohoussou ◽  
Anoubilé Bénié ◽  
Mamadou Guy-Richard Koné ◽  
N’guessan Yao Silvère Diki ◽  
Kafoumba Bamba ◽  
...  

In this work the formation of vinylphosphines was studied through the hydrophosphination reaction. The study aims to rationalize the stereoselectivity of these compounds using quantum DFT methods. This theoretical study of chemical reactivity was conducted at B3LYP/6-311 + G (d, p) level. Global chemical reactivity descriptors, stationary point energies and activation barriers were examined to foretell the relative stability of the stereoisomers formed. The various results obtained have revealed that the addition of arylphosphine to dihalogenoacetylene is stereospecific. The Trans form of vinylphosphines is more stable than the Cis form, when the substituent on phosphorus generates less or no π-conjugations. On the other hand, the Cis isomer is predominant when the aryl radical favors more π-conjugations. The theoretical results obtained are in agreement with the experimental results.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3312 ◽  
Author(s):  
Norma Flores-Holguín ◽  
Juan Frau ◽  
Daniel Glossman-Mitnik

A well-behaved model chemistry previously validated for the study of the chemical reactivity of peptides was considered for the calculation of the molecular properties and structures of the Papuamide family of marine peptides. A methodology based on Conceptual Density Functional Theory (CDFT) was chosen for the determination of the reactivity descriptors. The molecular active sites were associated with the active regions of the molecules related to the nucleophilic and electrophilic Parr functions. Finally, the drug-likenesses and the bioactivity scores for the Papuamide peptides were predicted through a homology methodology relating them with the calculated reactivity descriptors, while other properties such as the pKas were determined following a methodology developed by our group.


Sign in / Sign up

Export Citation Format

Share Document