scholarly journals Optimum Design of Oil Lubricated Thrust Bearing for Hard Disk Drive with High Speed Spindle Motor

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yuta Sunami ◽  
Mohd Danial Ibrahim ◽  
Hiromu Hashimoto

This paper presents the application of optimization method developed by Hashimoto to design oil lubricated thrust bearings for 2.5 inch form factor hard disk drives (HDD). The designing involves optimization of groove geometry and dimensions. Calculations are carried out to maximize the dynamic stiffness of the thrust bearing spindle motor. Static and dynamic characteristics of the modeled thrust bearing are calculated using the divergence formulation method. Results show that, by using the proposed optimization method, dynamic stiffness values can be well improved with the bearing geometries not being fixed to conventional grooves.

Author(s):  
Yuwen Zhu ◽  
Guoqing Zhang ◽  
Shengnan Shen ◽  
Hui Li ◽  
Yun Yang ◽  
...  

The presence of particles, which can intrude into the air bearing, is one of the most common factors in the failure of hard disk drives (HDDs). Previous works investigated the particle trajectory inside air-filled drives without considering the temperature effects on the distribution of particles. Actually, for the submicron particle, particle trajectory and trapping status are affected by the temperature gradient since the thermophoretic force cannot be ignored. In this paper, considering the major heat generation components such as spindle motor and voice coil motor (VCM), the trajectories and trapping status for Al2O3 particles with diameter of 0.3 μm inside a 2.5 inch helium-filled drive are simulated by the commercial computational fluid dynamics solver FLUENT with user-defined functions (UDFs). The trapping criterion for Al2O3 particles are used as the boundary conditions for the different colliding surfaces.


Author(s):  
Jianbin Nie ◽  
Roberto Horowitz

This paper discusses the design and implementation of two track-following controllers for dual-stage hard disk drive servo systems. The first controller is designed by combining an outer loop sensitivity-decoupling (SD) controller with an inner loop disturbance observer (DOB). The second is designed by combining mixed H2/H∞ synthesis techniques with an add-on integral action. The designed controllers were implemented and evaluated on a disk drive with a PZT-actuated suspension-based dual-stage servo system. Position error signal (PES) for the servo system was obtained by measuring the slider displacement with an LDV and injecting a simulated track runout.


Author(s):  
Sung-Chang Lee ◽  
George W. Tyndall ◽  
Mike Suk

Flying clearance distribution with thermo-mechanical actuation is characterized. Especially, what factors contributing to variation of flying clearance are identified based on thermo-mechanical actuation profiles taken from burn-in process of hard disk drives and Gage R&R test of touch down repeatability. In addition, the effect of static temperature compensation scheme on flying clearance distribution is investigated and disadvantages of static adaptation to temperature change are identified. In order to avoid catastrophic early HDI failures due to poor static temperature compensation, we need to dynamically adjust flying clearance whenever environmental change is detected. Otherwise we need to utilize individual temperature sensitivity values of each flying head to adjust thermo-mechanical actuation amount accordingly with temperature change.


Author(s):  
Hequn Min ◽  
Xiaoyang Huang ◽  
Qide Zhang ◽  
Xin Xia

This paper presents an experimental study of digital narrowband active control on the flow-induced vibrations (FIV) on the head gimbals assembly (HGA) in a working hard disk drive (HDD). Firstly, the modal testing on the HDD was carried out, in which the disk modes were analyzed with a 1-D laser Doppler vibrometer (LDV) and the HGA vibration modes with a 3-D LDV. Secondly, a digital feedback control close-loop was implemented in experiments to suppress the FIV spectrum peaks on the HGA. In this close-loop, the HGA vibrations detected by the LDV were used as feedback error signals, then the signals was passed through a digital controller to generate feedback signals to drive a piezoelectric disk to actuate feedback acoustic pressure around the HGA. Active control experiments were conducted in narrow bands on five principal peaks in the HGA off-plate vibration spectrum, around 1256Hz, 1428Hz, 2141Hz, 2519Hz and 3469Hz, respectively. It is shown that distinct suppression of at least 10 dB can be achieved on all these HGA vibration peaks.


Author(s):  
Zhimin He ◽  
Jianqiang Mou ◽  
Kheong Sann Chan ◽  
Suet Hoi Lam ◽  
Boon Long See ◽  
...  

One of the issues in VCM rotary actuation in hard disk drives (HDDs) is the excessive sensitivity of the system to the skew angle. The rotation of the VCM from the inner diameter (ID) to the outer diameter (OD) of the disk results in an angle of skew between the read/write head and the track. The difference in skew angle, between the ID to the OD can be as large as 25 to 30 degrees in conventional 3.5″ and 2.5″ HDDs. A large skew angle affects the slider’s flying performance and off-track capability, causing an increase in side reading and writing, and thus reduces the achievable recording density. Large skewed actuation also complicates the position error signal calibration process in the hard disk drive servo loop. This paper presents a 4 link mechanism which can be designed to achieve near zero skew actuation in hard disk drives. The profiles of the arm, suspension, and links can be designed and optimized such that the skew angle is close to zero while the VCM actuator rotates from the ID to the OD. Study shows that the 4-link mechanism does not degrade the resonance performance along the tracking direction compared to a conventional actuator.


2012 ◽  
Vol 197 ◽  
pp. 292-296 ◽  
Author(s):  
He Qun Min ◽  
Xiao Yang Huang ◽  
Qi De Zhang

Flow-induced vibration (FIV) of a head gimbals assembly (HGA) in hard disk drives (HDDs) limits the positioning accuracy of magnetic head in the HGA for higher HDD magnetic recording density. The pressure fluctuations characterize turbulent fluctuations exciting the HGA off-track vibration (HGA-OTV). In this paper, experimental studies have been carried out to investigate the spectrum characteristics correspondence between pressure fluctuations around an HGA and the simultaneous HGA-OTV under different HDD rotation speeds. A practical and effective experimental setup has been implemented to enable the simultaneous measurements on both the pressure fluctuation and HGA-OTV signals, where pressure fluctuations are measured with a pressure transducer through a small hole on the HDD top cover and the direct HGA-OTV signals are detected through a laser Doppler vibrometer. Results under conditions of three different HDD rotation speeds of 7200, 9000, 10800 rpm have been investigated and compared. It is shown that the HGA off-track vibration spectra are highly associated with those of the pressure fluctuations in terms of principal peaks in four frequency bands around 1.8 kHz, 2.5-3.5 kHz, 7-7.5 kHz and 11.5-12.5 kHz. With increasing HDD rotation speed, it is shown that the spectrum magnitudes of both the pressure fluctuation and the HGA off-track vibration increase correspondingly, while the principal peak positions in spectra of either pressure fluctuation or the HGA off-track vibration always hold the line. This study demonstrates a causal nexus from the pressure fluctuation to the HGA off-track vibration and suggests the feasibility of controlling the HGA-OTV through suppression of pressure fluctuations around the HGA.


Author(s):  
M. Brake ◽  
J. A. Wickert

Flex circuits are a laminate of polyimide substrate, adhesive, and copper conductors, and they are used to connect the (stationary) electronic components in a hard disk drive to the (rotating) arm that positions the read/write heads above the disk. The transverse and longitudinal vibration of flex circuits couples with motion of the read/write heads and contributes to increased settling time and residual vibration following repositioning of the arm from one data track to another. In this paper, the results of parameter, optimization, and experimental studies are discussed with a view toward increasing the isolation of vibration between the flex circuit to the arm in terms of a metric involving one or several important vibration modes.


Sign in / Sign up

Export Citation Format

Share Document