voice coil motor
Recently Published Documents


TOTAL DOCUMENTS

312
(FIVE YEARS 71)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
pp. 107754632110623
Author(s):  
Shota Yabui ◽  
Takenori Atsumi

Large-capacity hard disk drives are important for the development of an information society. The capacities of hard disk drives depend on the positioning accuracy of magnetic heads, which read and write digital data, in disk-positioning control systems. Therefore, it is necessary to improve positioning accuracy to develop hard disk drives with large capacities. Hard disk drives employ dual-stage actuator systems to accurately control the magnetic heads. A dual-stage actuator system consists of a voice coil motor and micro-actuator. In micro-actuators, there is a trade-off between head-positioning accuracy and stroke limitation. In particular, in a conventional controller design, the micro-actuator is required to actuate such that it compensates for low-frequency vibration. To overcome this trade-off, this study proposes a high-bandwidth controller design for the micro-actuator in a dual-stage actuator system. The proposed method can reduce the required stroke of the micro-actuator by increasing the gain of the feedback controller of the voice coil motor at low frequencies. Although the voice coil motor control loop becomes unstable, the micro-actuator stabilizes the entire feedback loop at high frequencies. As a result, the control system improves the positioning accuracy compared to that achieved by conventional control methods, and the required micro-actuator stroke is reduced.


Actuators ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 320
Author(s):  
Chien-Sheng Liu ◽  
Yu-Cheng Wu ◽  
Yu-Jie Lan

In order to improve the quality of the laser and shorten the optical path of the fast steering mirror (FSM) laser compensation system, this paper proposes a four-degrees-of-freedom (4-DOF) voice coil motor (VCM) with the function of reducing laser geometrical fluctuations. The feature of this paper is the combination of a DC brushed spindle motor and the proposed 4-DOF VCM. A diffuser is installed on the shaft of the DC brushed motor for suppressing the laser speckle. The proposed 4-DOF VCM is combined with a laboratory-designed mirror set, controlling the laser direction to compensate for laser fluctuations. The proposed actuator was designed and verified by using the commercial CAD software SolidWorks and finite element analysis (FEA) software ANSYS. A mathematical model was built to simulate the dynamic response of the proposed 4-DOF VCM in MATLAB Simulink.


Author(s):  
Qiyi Wu ◽  
Bowen Xu ◽  
Jien Ma ◽  
Lin Qiu ◽  
Xing Liu ◽  
...  

2021 ◽  
Vol 217 (7) ◽  
Author(s):  
Christopher S. Edwards ◽  
Philip R. Christensen ◽  
Greg L. Mehall ◽  
Saadat Anwar ◽  
Eman Al Tunaiji ◽  
...  

AbstractThe Emirates Mars Mission Emirates Mars Infrared Spectrometer (EMIRS) will provide remote measurements of the martian surface and lower atmosphere in order to better characterize the geographic and diurnal variability of key constituents (water ice, water vapor, and dust) along with temperature profiles on sub-seasonal timescales. EMIRS is a FTIR spectrometer covering the range from 6.0-100+ μm (1666-100 cm−1) with a spectral sampling as high as 5 cm−1 and a 5.4-mrad IFOV and a 32.5×32.5 mrad FOV. The EMIRS optical path includes a flat 45° pointing mirror to enable one degree of freedom and has a +/- 60° clear aperture around the nadir position which is fed to a 17.78-cm diameter Cassegrain telescope. The collected light is then fed to a flat-plate based Michelson moving mirror mounted on a dual linear voice-coil motor assembly. An array of deuterated L-alanine doped triglycine sulfate (DLaTGS) pyroelectric detectors are used to sample the interferogram every 2 or 4 seconds (depending on the spectral sampling selected). A single 0.846 μm laser diode is used in a metrology interferometer to provide interferometer positional control, sampled at 40 kHz (controlled at 5 kHz) and infrared signal sampled at 625 Hz. The EMIRS beamsplitter is a 60-mm diameter, 1-mm thick 1-arcsecond wedged chemical vapor deposited diamond with an antireflection microstructure to minimize first surface reflection. EMIRS relies on an instrumented internal v-groove blackbody target for a full-aperture radiometric calibration. The radiometric precision of a single spectrum (in 5 cm−1 mode) is <3.0×10−8 W cm−2 sr−1/cm−1 between 300 and 1350 cm−1 over instrument operational temperatures (<∼0.5 K NE$\Delta $ Δ T @ 250 K). The absolute integrated radiance error is < 2% for scene temperatures ranging from 200-340 K. The overall EMIRS envelope size is 52.9×37.5×34.6 cm and the mass is 14.72 kg including the interface adapter plate. The average operational power consumption is 22.2 W, and the standby power consumption is 18.6 W with a 5.7 W thermostatically limited, always-on operational heater. EMIRS was developed by Arizona State University and Northern Arizona University in collaboration with the Mohammed bin Rashid Space Centre with Arizona Space Technologies developing the electronics. EMIRS was integrated, tested and radiometrically calibrated at Arizona State University, Tempe, AZ.


2021 ◽  
Vol 11 (16) ◽  
pp. 7742
Author(s):  
Saifei Zhang ◽  
Chunhua Zhang ◽  
Yong Liu ◽  
Wei Wu ◽  
Han Wu ◽  
...  

The miniaturization of electrical equipment and popularization of portable devices is an appealing motivation for the development of small-scale heat engines. However, the in-cylinder charge leaks severely as the engine dimension shrinks. The free-piston engine on a small scale provides better sealing than other miniature heat engines. Therefore, a miniature free-piston generator (MFPG) with a single-piston internal combustion engine (ICE) and a voice coil motor (VCM) was proposed in this work. A dynamic model with special attention on the heat transfer and leakage was established accordingly, upon which parametric studies of leakage and its effects on the performance of the MFPG system were performed. Four key parameters, including scavenging pressure, ignition position, combustion duration and piston mass, were considered in the model. The results showed that the mass leakage during the compression decreases with the rise of the motoring current. The indicated thermal efficiency can be improved by boosting scavenging pressure and increase motoring current. The critical ignition position is 2 mm before the top dead center. When ignition occurs later than that, the MFPG system is incapable of outputting power. The chemical to electric energy conversion efficiency is about 5.13 %, with an output power of 10~13 W and power density around 4.7~5.7 W/cc.


2021 ◽  
Author(s):  
Yiqun Huang ◽  
Shuai Wu ◽  
Hongtao Jin ◽  
Zongxia Jiao

Actuators ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 155
Author(s):  
Yi-Hsuan Lin ◽  
Chien-Sheng Liu ◽  
Chiu-Nung Yeh

Multi-DOF motion is realized in the eyes and joints of robots mostly through the combination of multiple one-degree-of-freedom (1-DOF) motors. However, this results in reduced efficiency, a large volume, reduced response speed, and inaccurate positioning. To solve these problems, this study proposes a novel 3-DOF spherical voice coil motor (VCM). In this VCM, 16 coils and a radially oriented ring magnet are used to generate a Lorentz force to achieve motion. In particular, coils for Z-axis rotation are sandwiched between the coils for X- and Y-axis rotation. Furthermore, the proposed VCM can achieve 360° rotation about the Z-axis. The commercial software ANSYS was used to design and verify the performance of the proposed VCM. Simulation results indicate that this VCM affords improved power efficiency because only a suitable combination of coils, rather than all coils, needs to be powered on. The results demonstrate the feasibility of the proposed 3-DOF spherical VCM.


2021 ◽  
Vol 67 (5) ◽  
pp. 223-234
Author(s):  
Mingxing Han ◽  
Yinshui Liu ◽  
Yitao Liao ◽  
Shucai Wang

As the key control component of the water hydraulic systems, the water hydraulic proportional valve has a significant influence on the control performance of the systems. Due to the poor viscosity and lubricity of water, the valve spool resistance is large and non-linear. In this study, a novel fast-response water hydraulic proportional valve is presented. The actuator of the valve adopts a voice coil motor (VCM), which has the advantages of fast response, high control precision and small volume. In order to realize the fast control of the valve, a lever amplifier is designed to obtain enough actuation force. A detailed and precise non-linear mathematical model of the valve considering both the valve’s structural parameters and VCM electromagnetic characteristics is developed. A comprehensive performance simulation analysis has been carried out, mainly divided into an electromagnetic simulation, an analysis of the characteristics of the lever magnifier, and a dynamic performance simulation of the valve. The simulation results show that the adjusting time is about 28ms, and the maximum overshoot is about 5 %. The step response rise time is about 15 ms. The test rig of the valve and VCM have been built. The test results of the prototype show that the optimal stroke range of VCM is 4 mm to 15 mm. The maximum overshoot of the valve is around 10 %; the adjusting time is about 30 ms in the opening process and 35 ms in the closing process. The test results prove that the valve has good static and dynamic control performance.


Sign in / Sign up

Export Citation Format

Share Document