scholarly journals On Linear Difference Equations for Which the Global Periodicity Implies the Existence of an Equilibrium

2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
István Győri ◽  
László Horváth

It is proved that any first-order globally periodic linear inhomogeneous autonomous difference equation defined by a linear operator with closed range in a Banach space has an equilibrium. This result is extended for higher order linear inhomogeneous system in a real or complex Euclidean space. The work was highly motivated by the early works of Smith (1934, 1941) and the papers of Kister (1961) and Bas (2011).

2007 ◽  
Vol 49 (1) ◽  
pp. 145-154
Author(s):  
BRUCE A. BARNES

Abstract.LetTbe a bounded linear operator on a Banach spaceW, assumeWandYare in normed duality, and assume thatThas adjointT†relative toY. In this paper, conditions are given that imply that for all λ≠0, λ−Tand λ −T†maintain important standard operator relationships. For example, under the conditions given, λ −Thas closed range if, and only if, λ −T†has closed range.These general results are shown to apply to certain classes of integral operators acting on spaces of continuous functions.


1989 ◽  
Vol 12 (3) ◽  
pp. 473-476 ◽  
Author(s):  
Aribindi Satyanarayan Rao

We consider a differential equationddtu(t)-Bu(t)=f(t), where the functions u and f map the real line into a Banach space X and B: X→X is a bounded linear operator. Assuming that any Stepanov-bounded solution u is Stepanov almost-periodic when f is Bochner almost-periodic, we establish that any Stepanov-bounded solution u is Bochner almost-periodic when f is Stepanov almost-periodic. Some examples are given in which the operatorddt-B is shown to satisfy our assumption.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1162
Author(s):  
Ramandeep Behl ◽  
Ioannis K. Argyros ◽  
Fouad Othman Mallawi ◽  
Christopher I. Argyros

Symmetries are important in studying the dynamics of physical systems which in turn are converted to solve equations. Jarratt’s method and its variants have been used extensively for this purpose. That is why in the present study, a unified local convergence analysis is developed of higher order Jarratt-type schemes for equations given on Banach space. Such schemes have been studied on the multidimensional Euclidean space provided that high order derivatives (not appearing on the schemes) exist. In addition, no errors estimates or results on the uniqueness of the solution that can be computed are given. These problems restrict the applicability of the methods. We address all these problems by using the first order derivative (appearing only on the schemes). Hence, the region of applicability of existing schemes is enlarged. Our technique can be used on other methods due to its generality. Numerical experiments from chemistry and other disciplines of applied sciences complete this study.


In this article the oscillation of difference equation with deviating argumentand nonnegative coefficients is considered. Sufficient oscillation conditions involving limit inf are given. The iterative technique is used to improve the results


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Stevo Stević ◽  
Bratislav Iričanin ◽  
Witold Kosmala ◽  
Zdeněk Šmarda

Abstract It is known that every solution to the second-order difference equation $x_{n}=x_{n-1}+x_{n-2}=0$ x n = x n − 1 + x n − 2 = 0 , $n\ge 2$ n ≥ 2 , can be written in the following form $x_{n}=x_{0}f_{n-1}+x_{1}f_{n}$ x n = x 0 f n − 1 + x 1 f n , where $f_{n}$ f n is the Fibonacci sequence. Here we find all the homogeneous linear difference equations with constant coefficients of any order whose general solution have a representation of a related form. We also present an interesting elementary procedure for finding a representation of general solution to any homogeneous linear difference equation with constant coefficients in terms of the coefficients of the equation, initial values, and an extension of the Fibonacci sequence. This is done for the case when all the roots of the characteristic polynomial associated with the equation are mutually different, and then it is shown that such obtained representation also holds in other cases. It is also shown that during application of the procedure the extension of the Fibonacci sequence appears naturally.


Author(s):  
Robert Stegliński

AbstractIn this work, we establish optimal Lyapunov-type inequalities for the second-order difference equation with p-Laplacian $$\begin{aligned} \Delta (\left| \Delta u(k-1)\right| ^{p-2}\Delta u(k-1))+a(k)\left| u(k)\right| ^{p-2}u(k)=0 \end{aligned}$$ Δ ( Δ u ( k - 1 ) p - 2 Δ u ( k - 1 ) ) + a ( k ) u ( k ) p - 2 u ( k ) = 0 with Dirichlet, Neumann, mixed, periodic and anti-periodic boundary conditions.


1985 ◽  
Vol 37 (5) ◽  
pp. 908-920
Author(s):  
A. D. Andrew

1. In this paper, we investigate the ranges of projections on certain Banach spaces of functions defined on a diadic tree. The notion of a “tree-like” Banach space is due to James 4], who used it to construct the separable space JT which has nonseparable dual and yet does not contain l1. This idea has proved useful. In [3], Hagler constructed a hereditarily c0 tree space, HT, and Schechtman [6] constructed, for each 1 ≦ p ≦ ∞, a reflexive Banach space, STp with a 1-unconditional basis which does not contain lp yet is uniformly isomorphic to for each n.In [1] we showed that if U is a bounded linear operator on JT, then there exists a subspace W ⊂ JT, isomorphic to JT such that either U or (1 — U) acts as an isomorphism on W and UW or (1 — U)W is complemented in JT. In this paper, we establish this result for the Hagler and Schechtman tree spaces.


1991 ◽  
Vol 14 (3) ◽  
pp. 611-614 ◽  
Author(s):  
James R. Holub

It is shown that ifXis a uniformly convex Banach space andSa bounded linear operator onXfor which‖I−S‖=1, thenSis invertible if and only if‖I−12S‖<1. From this it follows that ifSis invertible onXthen either (i)dist(I,[S])<1, or (ii)0is the unique best approximation toIfrom[S], a natural (partial) converse to the well-known sufficient condition for invertibility thatdist(I,[S])<1.


1986 ◽  
Vol 9 (3) ◽  
pp. 583-587
Author(s):  
Ioannis K. Argyros

We examine the solvability of multilinear equations of the formMk(x,x,…,x)−k   times−=y,   k=2,3,…whereMkis ak-linear operator on a Banach spaceXandy∈Xis fixed.


Sign in / Sign up

Export Citation Format

Share Document