The Budget of Turbulent Kinetic Energy during Premonsoon Season over Kharagpur as Revealed by STORM Experimental Data

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Bhishma Tyagi ◽  
A. N. V. Satyanarayana

Turbulent kinetic energy (TKE) budget variations during thunderstorm days (TD) and nonthunderstorm days (NTD) of premonsoon seasons of 2007, 2009, and 2010 have been investigated at a tropical station Kharagpur (22°30′N, 87°20′E) using the surface layer turbulence data obtained during severe thunderstorms-observations and regional modeling (STORM) experiment. Significant variations in the contributions of the TKE budget parameters with respect to stability are observed on these contrasting days of weather activity. In highly unstable conditions, smaller dissipation rates are seen on TD compared to NTD, while approaching near neutral conditions, higher dissipation rates are found in TD. New relationships between TKE dissipation rates with respect to atmospheric stability are proposed at Kharagpur for TD and NTD.

2019 ◽  
Vol 58 (11) ◽  
pp. 2405-2420
Author(s):  
Dong-Peng Guo ◽  
Peng Zhao ◽  
Ren-Tai Yao ◽  
Yun-Peng Li ◽  
Ji-Min Hu ◽  
...  

AbstractIn this paper, the k–ε renormalization group (RNG) turbulence model is used to simulate the flow and dispersion of pollutants emitted from a source at the top of a cubic building under neutral and stable atmospheric stratifications, the results of which were compared with corresponding wind tunnel experiment results. When atmosphere stratification is stable, the separation zones on the sides and at the top of a building are relatively smaller than those under neutral conditions, and the effect of the building in the horizontal direction is stronger than that in the vertical direction. The variation in turbulent kinetic energy under stable conditions is significantly lower than that under neutral conditions. The effect of atmospheric stratification on the turbulent kinetic energy becomes gradually more prominent with increased distance. When atmosphere conditions are stable, the vertical distribution of the plume is smaller than that of neutral conditions, but the lateral spread and near-ground concentration are slightly larger than those of neutral conditions, mainly because stable atmospheric stratification suppresses the vertical motions of airflow and increases the horizontal spread of the plume.


1994 ◽  
Vol 116 (2) ◽  
pp. 369-380 ◽  
Author(s):  
P. Tekriwal

Standard and extended k–ε turbulence closure models have been employed for three-dimensional heat transfer calculations for radially outward flow in rectangular and square cooling passages rotating in orthogonal mode. The objective of this modeling effort is to validate the numerical model in an attempt to fill the gap between model predictions and the experimental data for heat transfer in rotating systems. While the trend of heat transfer predictions by the standard k–ε turbulence model is satisfactory, the differences between the data and the predictions are approximately 30 percent or so in the case of high rotation number flow. The extended k–ε turbulence model takes an approach where an extra “source” term based on a second time scale of the turbulent kinetic energy production rate is added to the equation for the dissipation rate of turbulent kinetic energy. This yields a more effective calculation of turbulent kinetic energy as compared to the standard k–ε turbulence model in the case of high rotation number and high density ratio flow. As a result, comparison with the experimental data available in the literature shows that an improvement of up to a significant 15 percent (with respect to data) in the heat transfer coefficient predictions is achieved over the standard k–ε model in the case of high rotation number flow. Comparisons between the results of the standard k–ε model and the extended formulation are made at different rotation numbers, different Reynolds numbers, and varying temperature ratio. The results of the extended k–ε turbulence model are either as good or better than those of the standard k–ε model in all these cases of parametric study. Thus, the extended k–ε turbulence model proves to be more general and reduces the discrepancy between the model predictions and the experimental data for heat transfer in rotating systems.


2009 ◽  
Vol 9 (7) ◽  
pp. 2335-2353 ◽  
Author(s):  
W. W. Grabowski ◽  
L.-P. Wang

Abstract. A large set of rising adiabatic parcel simulations is executed to investigate the combined diffusional and accretional growth of cloud droplets in maritime and continental conditions, and to assess the impact of enhanced droplet collisions due to small-scale cloud turbulence. The microphysical model applies the droplet number density function to represent spectral evolution of cloud and rain/drizzle drops, and various numbers of bins in the numerical implementation, ranging from 40 to 320. Simulations are performed applying two traditional gravitational collection kernels and two kernels representing collisions of cloud droplets in the turbulent environment, with turbulent kinetic energy dissipation rates of 100 and 400 cm2 s−3. The overall result is that the rain initiation time significantly depends on the number of bins used, with earlier initiation of rain when the number of bins is low. This is explained as a combination of the increase of the width of activated droplet spectrum and enhanced numerical spreading of the spectrum during diffusional and collisional growth when the number of model bins is low. Simulations applying around 300 bins seem to produce rain at times which no longer depend on the number of bins, but the activation spectra are unrealistically narrow. These results call for an improved representation of droplet activation in numerical models of the type used in this study. Despite the numerical effects that impact the rain initiation time in different simulations, the turbulent speedup factor, the ratio of the rain initiation time for the turbulent collection kernel and the corresponding time for the gravitational kernel, is approximately independent of aerosol characteristics, parcel vertical velocity, and the number of bins used in the numerical model. The turbulent speedup factor is in the range 0.75–0.85 and 0.60–0.75 for the turbulent kinetic energy dissipation rates of 100 and 400 cm2 s−3, respectively.


2017 ◽  
Vol 34 (6) ◽  
pp. 1267-1284 ◽  
Author(s):  
Maricarmen Guerra ◽  
Jim Thomson

AbstractTwo new five-beam acoustic Doppler current profilers—the Nortek Signature1000 AD2CP and the Teledyne RDI Sentinel V50—are demonstrated to measure turbulence at two energetic tidal channels within Puget Sound, Washington. The quality of the raw data is tested by analyzing the turbulent kinetic energy frequency spectra, the turbulence spatial structure function, the shear in the profiles, and the covariance Reynolds stresses. The five-beam configuration allows for a direct estimation of the Reynolds stresses from along-beam velocity fluctuations. The Nortek’s low Doppler noise and high sampling frequency allow for the observation of the turbulent inertial subrange in both the frequency spectra and the turbulence structure function. The turbulence parameters obtained from the five-beam acoustic Doppler current profilers are validated with turbulence data from simultaneous measurements with acoustic Doppler velocimeters. These combined results are then used to assess a turbulent kinetic energy budget in which depth profiles of the turbulent kinetic energy dissipation and production rates are compared. The associated codes are publicly available on the MATLAB File Exchange website.


2016 ◽  
Vol 33 (4) ◽  
pp. 817-837 ◽  
Author(s):  
Justine M. McMillan ◽  
Alex E. Hay ◽  
Rolf G. Lueck ◽  
Fabian Wolk

AbstractThe ability to estimate the rate of dissipation (ε) of turbulent kinetic energy at middepth in a high-speed tidal channel using broadband acoustic Doppler current profilers (ADCPs) is assessed by making comparisons to direct measurements of ε obtained using shear probes mounted on a streamlined underwater buoy. The investigation was carried out in Grand Passage, Nova Scotia, Canada, where the depth-averaged flow speed reached 2 m s−1 and the Reynolds number was 8 × 107. The speed bin–averaged dissipation rates estimated from the ADCP data agree with the shear probe data to within a factor of 2. Both the ADCP and the shear probe measurements indicate a linear dependence of ε on the cube of the flow speed during flood and much lower dissipation rates during ebb. The ebb–flood asymmetry and the small-scale intermittency in ε are also apparent in the lognormal distributions of the shear probe data. Possible sources of bias and error in the ε estimates are investigated, and the most likely causes of the discrepancy between the ADCP and shear probe estimates are the cross-channel separation of the instruments and the high degree of spatial variability that exists in the channel.


2017 ◽  
Vol 139 (10) ◽  
Author(s):  
Shashank S. Moghe ◽  
Scott M. Janowiak

Modern engines with increasing power densities have put additional demands on pistons to perform in incrementally challenging thermal environments. Piston cooling is therefore of paramount importance for engine component manufacturers. The objective of this computational fluid dynamics (CFD) study is to identify the effect of a given piston cooling nozzle (PCN) geometry on the cooling oil jet spreading phenomenon. The scope of this study is to develop a numerical setup using the open-source CFD toolkit OpenFoam® for measuring the magnitude of oil jet spreading and comparing it to experimental results. Large eddy simulation (LES) turbulence modeling is used to capture the flow physics that affects the inherently unsteady jet breakup phenomenon. The oil jet spreading width is the primary metric used for comparing the numerical and experimental results. The results of simulation are validated for the correct applicability of LES by evaluating the fraction of resolved turbulent kinetic energy (TKE) at various probe locations and also by performing turbulent kinetic energy spectral analysis. CFD results appear promising since they correspond to the experimental data within a tolerance (of ±10%) deemed satisfactory for the purpose of this study. Further generalization of the setup is underway toward developing a tool that predicts the aforementioned metric—thereby evaluating the effect of PCN geometry on oil jet spreading and hence on the oil catching efficiency (CE) of the piston cooling gallery. This tool would act as an intermediate step in boundary condition formulation for the simulation determining the filling ratio (FR) and subsequently the heat transfer coefficients (HTCs) in the piston cooling gallery.


2008 ◽  
Vol 8 (4) ◽  
pp. 14717-14763 ◽  
Author(s):  
W. W. Grabowski ◽  
L.-P. Wang

Abstract. A large set of rising adiabatic parcel simulations is executed to investigate the combined diffusional and accretional growth of cloud droplets in maritime and continental conditions, and to assess the impact of enhanced droplet collisions due to small-scale cloud turbulence. The microphysical model applies the droplet number density function to represent spectral evolution of cloud and rain/drizzle drops, and various numbers of bins in the numerical implementation, ranging from 40 to 320. Simulations are performed applying two traditional gravitational collection kernels and two kernels representing collisions of cloud droplets in the turbulent environment, with turbulent kinetic energy dissipation rates of 100 and 400 cm2 s−3. The overall result is that the rain initiation time significantly depends on the number of bins used, with earlier initiation of rain when the number of bins is low. This is explained as a combination of the increase of the width of activated droplet spectrum and enhanced numerical spreading of the spectrum during diffusional and collisional growth when the number of model bins is low. Simulations applying around 300 bins seem to produce rain at times which no longer depend on the number of bins, but the activation spectra are unrealistically narrow. These results call for an improved representation of droplet activation in numerical models of the type used in this study. Despite the numerical effects that impact the rain initiation time in different simulations, the turbulent speedup factor, the ratio of the rain initiation time for the turbulent collection kernel and the corresponding time for the gravitational kernel, is approximately independent of aerosol characteristics, parcel vertical velocity, and the number of bins used in the numerical model. The turbulent speedup factor is in the range 0.75–0.85 and 0.60–0.75 for the turbulent kinetic energy dissipation rates of 100 and 400 cm2 s−3, respectively.


2020 ◽  
Vol 148 (12) ◽  
pp. 4823-4835
Author(s):  
Cristina L. Archer ◽  
Sicheng Wu ◽  
Yulong Ma ◽  
Pedro A. Jiménez

AbstractAs wind farms grow in number and size worldwide, it is important that their potential impacts on the environment are studied and understood. The Fitch parameterization implemented in the Weather Research and Forecasting (WRF) Model since version 3.3 is a widely used tool today to study such impacts. We identified two important issues related to the way the added turbulent kinetic energy (TKE) generated by a wind farm is treated in the WRF Model with the Fitch parameterization. The first issue is a simple “bug” in the WRF code, and the second issue is the excessive value of a coefficient, called CTKE, that relates TKE to the turbine electromechanical losses. These two issues directly affect the way that a wind farm wake evolves, and they impact properties like near-surface temperature and wind speed at the wind farm as well as behind it in the wake. We provide a bug fix and a revised value of CTKE that is one-quarter of the original value. This 0.25 correction factor is empirical; future studies should examine its dependence on parameters such as atmospheric stability, grid resolution, and wind farm layout. We present the results obtained with the Fitch parameterization in the WRF Model for a single turbine with and without the bug fix and the corrected CTKE and compare them with high-fidelity large-eddy simulations. These two issues have not been discovered before because they interact with one another in such a way that their combined effect is a somewhat realistic vertical TKE profile at the wind farm and a realistic wind speed deficit in the wake. All WRF simulations that used the Fitch wind farm parameterization are affected, and their conclusions may need to be revisited.


2020 ◽  
Author(s):  
Nikoloz Gudadze ◽  
Gunter Stober ◽  
Hubert Luce ◽  
Jorge Luis Chau

<p>Investigation of turbulence in the polar mesopause is essential for a better understanding of dynamical or mixing processes in the region. Polar Mesospheric Summer Echoes (PMSEs), occurring at mesopause altitudes during the summer season, are known to be a result of turbulence-induced fluctuations in the refractive index. The presence of ice particles controls and reduce the free-electron diffusivity in D region plasma, which in turn leads to complex, strong radar echoes at very high frequencies.</p><p>Often, Doppler spectral width of radar measurements are associated with the strength of turbulence in the target area and traditionally used to estimate turbulent kinetic energy dissipation rates, a fundamental parameter of the turbulence processes. Besides the cooling of summer mesopause region induced by GW drag, the turbulence produced by GW breaking contributes to the total energy budget due to release of turbulent kinetic energy to heat. We use PMSE spectral width measurements observed by Middle Atmosphere Alomar Radar System (MAARSY) during summer of 2016 to study their summer temporal mean profiles as well as temporal evolution and connection to the atmospheric turbulence at PMSE altitudes - 80 and 90 km. The current theoretical models suggest that the radar reflectivity should correlate to the strength of the turbulence; however, such a relation is mainly observed for the weaker PMSEs. The mean summer behaviour of estimated turbulent kinetic energy dissipation rates shows an increase from lower altitudes up to 90 km. It should be noticed that spectral width measurements contain additional broadening rather than turbulence, so derived energy dissipation rates are “upper values” than expected from pure turbulence. The results are still slightly lower than those known from climatology obtained from rocket soundings, mostly at altitudes close to the maximum occurrence of PMSE, 86-87 km.</p><p>We discuss a possible consequence of spectral width measurements under strong PMSEs. In such conditions, the strength of the echo does not correlate with the turbulence intensity, and the observed spectral width is weaker. However, the uniform distribution of spectral width values throughout the echo power is expected from the present theoretical understandings. Based on previous studies, strong PMSEs can also be observed during fossil turbulence. The interpretation of connection the spectral with measurements under fossil turbulence with the turbulence energy dissipation rates and the possibility of using PMSEs for the turbulence studies will be discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document