scholarly journals A High Performance Load Balance Strategy for Real-Time Multicore Systems

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Keng-Mao Cho ◽  
Chun-Wei Tsai ◽  
Yi-Shiuan Chiu ◽  
Chu-Sing Yang

Finding ways to distribute workloads to each processor core and efficiently reduce power consumption is of vital importance, especially for real-time systems. In this paper, a novel scheduling algorithm is proposed for real-time multicore systems to balance the computation loads and save power. The developed algorithm simultaneously considers multiple criteria, a novel factor, and task deadline, and is called power and deadline-aware multicore scheduling (PDAMS). Experiment results show that the proposed algorithm can greatly reduce energy consumption by up to 54.2% and the deadline times missed, as compared to the other scheduling algorithms outlined in this paper.

2018 ◽  
Vol 27 (07) ◽  
pp. 1850101 ◽  
Author(s):  
Xu Jiang ◽  
Xiang Long

Recently, an increasing number of real-time systems are implemented on multicore systems. To fully utilize the computation power of multicore systems, the scheduling problem of the real-time parallel task model is receiving more attention. Different types of scheduling algorithms and analysis techniques have been proposed for parallel real-time tasks modeled as directed acyclic graphs (DAG). In this paper, we study the scheduling problem for DAGs under the decomposition paradigm. We propose a new schedulability test and corresponding decomposition strategy. We show that this new decomposition approach strictly dominates the latest decomposition-based approach. Simulations are conducted to evaluate the real-time performance of our proposed scheduling algorithm, against the state-of-the-art scheduling and analysis methods of different types. Experimental results show that our method consistently outperforms other global methods under different parameter settings.


1985 ◽  
Vol C-34 (12) ◽  
pp. 1130-1143 ◽  
Author(s):  
John A. Stankovic ◽  
Krithivasan Ramamritham ◽  
Shengchang Cheng

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Mouna Baklouti ◽  
Mohamed Abid

To meet the high performance demands of embedded multimedia applications, embedded systems are integrating multiple processing units. However, they are mostly based on custom-logic design methodology. Designing parallel multicore systems using available standards intellectual properties yet maintaining high performance is also a challenging issue. Softcore processors and field programmable gate arrays (FPGAs) are a cheap and fast option to develop and test such systems. This paper describes a FPGA-based design methodology to implement a rapid prototype of parametric multicore systems. A study of the viability of making the SoC using the NIOS II soft-processor core from Altera is also presented. The NIOS II features a general-purpose RISC CPU architecture designed to address a wide range of applications. The performance of the implemented architecture is discussed, and also some parallel applications are used for testing speedup and efficiency of the system. Experimental results demonstrate the performance of the proposed multicore system, which achieves better speedup than the GPU (29.5% faster for the FIR filter and 23.6% faster for the matrix-matrix multiplication).


Author(s):  
Apurva Shah ◽  
Ketan Kotecha

The Ant Colony Optimization (ACO) algorithms are computational models inspired by the collective foraging behavior of ants. The ACO algorithms provide inherent parallelism, which is very useful in multiprocessor environments. They provide balance between exploration and exploitation along with robustness and simplicity of individual agent. In this paper, ACO based dynamic scheduling algorithm for homogeneous multiprocessor real-time systems is proposed. The results obtained during simulation are measured in terms of Success Ratio (SR) and Effective CPU Utilization (ECU) and compared with the results of Earliest Deadline First (EDF) algorithm in the same environment. It has been observed that the proposed algorithm is very efficient in underloaded conditions and it performs very well during overloaded conditions also. Moreover, the proposed algorithm can schedule some typical instances successfully which are not possible to schedule using EDF algorithm.


Author(s):  
Lavanya Dhanesh ◽  
P. Murugesan

Scheduling of tasks based on real time requirement is a major issue in the heterogeneous multicore systemsfor micro-grid power management . Heterogeneous multicore processor schedules the serial tasks in the high performance core and parallel tasks are executed on the low performance cores. The aim of this paper is to implement a scheduling algorithm based on fuzzy logic for heterogeneous multicore processor for effective micro-grid application. Real – time tasks generally have different execution time and dead line. The main idea is to use two fuzzy logic based scheduling algorithm, first is to assign priority based on execution time and deadline of the task. Second , the task which has assigned higher priority get allotted for execution in high performance core and remaining tasks which are assigned low priority get allotted in low performance cores. The main objective of this scheduling algorithm is to increase the throughput and to improve CPU utilization there by reducing the overall power consumption of the micro-grid power management systems. Test cases with different task execution time and deadline were generated to evaluate the algorithms using  MATLAB software.


Sign in / Sign up

Export Citation Format

Share Document