scholarly journals Protein Sequence Classification with Improved Extreme Learning Machine Algorithms

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Jiuwen Cao ◽  
Lianglin Xiong

Precisely classifying a protein sequence from a large biological protein sequences database plays an important role for developing competitive pharmacological products. Comparing the unseen sequence with all the identified protein sequences and returning the category index with the highest similarity scored protein, conventional methods are usually time-consuming. Therefore, it is urgent and necessary to build an efficient protein sequence classification system. In this paper, we study the performance of protein sequence classification using SLFNs. The recent efficient extreme learning machine (ELM) and its invariants are utilized as the training algorithms. The optimal pruned ELM is first employed for protein sequence classification in this paper. To further enhance the performance, the ensemble based SLFNs structure is constructed where multiple SLFNs with the same number of hidden nodes and the same activation function are used as ensembles. For each ensemble, the same training algorithm is adopted. The final category index is derived using the majority voting method. Two approaches, namely, the basic ELM and the OP-ELM, are adopted for the ensemble based SLFNs. The performance is analyzed and compared with several existing methods using datasets obtained from the Protein Information Resource center. The experimental results show the priority of the proposed algorithms.

Feature Extraction from protein sequence is a very important task in bioinformatics. The main focus of that work is protein sequences classification that can be used to improve drug discovery and identification of diseases for treating patients in the early stages of diagnosis. In this paper, we proposed a method which is used for feature extraction i.e. converting the protein sequence of hemoglobin in to feature vectors. The feature vectors are then given to the ensemble classifier as an input which uses various classifier to provide better result/performance as compared to any constituent learning algorithm alone.


Author(s):  
Asım Balbay ◽  
Engin Avci ◽  
Ömer Şahin ◽  
Resul Coteli

Abstract Artificial neural networks (ANNs) have been widely used in modeling of various systems. Training of ANNs is commonly performed by backpropagation based on a gradient-based learning rule. However, it is well-known that such learning rule has several shortcomings such as slow convergence and training failures. This paper proposes a modeling technique based on Extreme Learning Machine (ELM) eliminating disadvantages of backpropagation based on a gradient-based learning rule for the drying of bittim (pistacia terebinthus). The samples for ELM based model are obtained by experimental studies. In experimental studies, the sample mass loss rate as a function time was investigated in different air velocities (0.5 and 1 m/s) and air temperatures (40, 60 and 80°C) in a designed dryer system. The obtained samples from experiments are used for training and testing of ELM. Further, some parameters of ELM such as type of activation function and the number of hidden neurons are set to obtain the best possible modelling results. The obtained prediction results show that ELM algorithm with tangent sigmoid activation function and 20 hidden neurons is appeared to be most optimal topology since maximum R2 and minimum rms (0.0500) and cov (0.2256) values are obtained. Thus, it is concluded that ELM can be used as an effective modelling tool in the drying of bittim (pistacia terebinthus) in fixed bed dryer system.


2009 ◽  
Vol 10 (Suppl 4) ◽  
pp. S2 ◽  
Author(s):  
Pavel Kuksa ◽  
Pai-Hsi Huang ◽  
Vladimir Pavlovic

2009 ◽  
Vol 16 (3) ◽  
pp. 457-474 ◽  
Author(s):  
Renqiang Min ◽  
Anthony Bonner ◽  
Jingjing Li ◽  
Zhaolei Zhang

Sign in / Sign up

Export Citation Format

Share Document