scholarly journals A Service Chain Discovery and Recommendation Scheme Using Complex Network Theory

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Guoqi Liu ◽  
Yuli Zhao ◽  
Zhuang Wang ◽  
Ying Liu

Service chain discovery and recommendation are significant in services composition. A complex network module based algorithm using services invocable relations is proposed to search useful service chains on the network. Furthermore, a new scheme for discovering composite services processes automatically and recommending service chains by ranking their QoS is provided. Simulations are carried out and the results indicate that some useful service chains in the dataset provided by the WSC2009 can be found by the new algorithm.

Author(s):  
Seog-Chan Oh ◽  
Dongwon Lee

In recent years, while many research proposals have been made toward novel algorithmic solutions of a myriad of web services composition problems, their validation has been less than satisfactory. One of the reasons for this problem is the lack of real benchmark web services data with which researchers can test and verify their proposals. In this chapter, to remedy this challenge, we present a novel benchmark toolkit, WSBen, which is capable of generating synthetic web services data with diverse scenarios and configurations using complex network theory. Web services researchers therefore can evaluate their web services discovery and composition algorithms in a more systematic fashion. The development of WSBen is inspired by our preliminary study on real-world web services crawled from the Web. The proposed WSBen can: (1) generate a collection of synthetic web services files in the WSDL format conforming to diverse complex network characteristics; (2) generate queries and ground truth sets for testing discovery and composition algorithms; (3) prepare auxiliary files to help further statistical analysis; (4) convert WSDL test sets to the formats that conventional AI planners can read; and (5) provide a graphical interface to control all these functions. To illustrate the application of the WSBen, in addition, we present case studies selected from three domains: (1) web services composition; (2) AI planning; and (3) the laws of networks in Physics community. The WSBen toolkit is available at: http://pike.psu.edu/sw/wsben/. This chapter is an invited extension of authors’ previous publication (Oh & Lee, 2009).


Author(s):  
Shuang Song ◽  
Dawei Xu ◽  
Shanshan Hu ◽  
Mengxi Shi

Habitat destruction and declining ecosystem service levels caused by urban expansion have led to increased ecological risks in cities, and ecological network optimization has become the main way to resolve this contradiction. Here, we used landscape patterns, meteorological and hydrological data as data sources, applied the complex network theory, landscape ecology, and spatial analysis technology, a quantitative analysis of the current state of landscape pattern characteristics in the central district of Harbin was conducted. The minimum cumulative resistance was used to extract the ecological network of the study area. Optimized the ecological network by edge-adding of the complex network theory, compared the optimizing effects of different edge-adding strategies by using robustness analysis, and put forward an effective way to optimize the ecological network of the study area. The results demonstrate that: The ecological patches of Daowai, Xiangfang, Nangang, and other old districts in the study area are small in size, fewer in number, strongly fragmented, with a single external morphology, and high internal porosity. While the ecological patches in the new districts of Songbei, Hulan, and Acheng have a relatively good foundation. And ecological network connectivity in the study area is generally poor, the ecological corridors are relatively sparse and scattered, the connections between various ecological sources of the corridors are not close. Comparing different edge-adding strategies of complex network theory, the low-degree-first strategy has the most outstanding performance in the robustness test. The low-degree-first strategy was used to optimize the ecological network of the study area, 43 ecological corridors are added. After the optimization, the large and the small ecological corridors are evenly distributed to form a complete network, the optimized ecological network will be significantly more connected, resilient, and resistant to interference, the ecological flow transmission will be more efficient.


2014 ◽  
Vol 13 (5) ◽  
pp. 963
Author(s):  
Burgert A. Senekal ◽  
Karlien Stemmet

The theory of complex systems has gained significant ground in recent years, and with it, complex network theory has become an essential approach to complex systems. This study follows international trends in examining the interlocking South African bank director network using social network analysis (SNA), which is shown to be a highly connected social network that has ties to many South African industries, including healthcare, mining, and education. The most highly connected directors and companies are identified, along with those that are most central to the network, and those that serve important bridging functions in facilitating network coherence. As this study is exploratory, numerous suggestions are also made for further research.


Sign in / Sign up

Export Citation Format

Share Document