ecological corridors
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 69)

H-INDEX

15
(FIVE YEARS 4)

2022 ◽  
pp. 1-17
Author(s):  
Paolo Bongi ◽  
Milena Baruffetti ◽  
Andrea Gazzola ◽  
Kieran O’Mahony
Keyword(s):  

2021 ◽  
Vol 13 (24) ◽  
pp. 5171
Author(s):  
Xiuming Wang ◽  
Youyue Wen ◽  
Xucheng Liu ◽  
Ding Wen ◽  
Yingxian Long ◽  
...  

The Ecological Protection Redline (EPR) is an innovative measure implemented in China to maintain the structural stability and functional security of the ecosystem. By prohibiting large-scale urban and industrial construction activities, EPR is regarded as the “lifeline” to ensure national ecological security. It is of great practical significance to scientifically evaluate the protection effect of EPR and identify the protection vacancies. However, current research has focused only on the protection effects of the EPR on ecosystem services (ESs), and the protection effect of the EPR on ecological connectivity remains poorly understood. Based on an evaluation of ES importance, the circuit model, and hotspot analysis, this paper identified the ecological security pattern in Guangdong–Hong Kong–Macao Greater Bay Area (GBA), analyzed the role of EPR in maintaining ES and ecological connectivity, and identified protection gaps. The results were as follows: (1) The ecological sources were mainly distributed in mountainous areas of the GBA. The ecological sources and ecological corridors constitute a circular ecological shelter surrounding the urban agglomeration of the GBA. (2) The EPR effectively protected water conservation, soil conservation, and biodiversity maintenance services, but the protection efficiency of carbon sequestration service and ecological connectivity were low. In particularly, EPR failed to continuously protect regional large-scale ecological corridors and some important stepping stones. (3) The protection gaps of carbon sequestration service and ecological connectivity in the study area reached 1099.80 km2 and 2175.77 km2, respectively, mainly distributed in Qingyuan, Yunfu, and Huizhou. In future EPR adjustments, important areas for carbon sequestration service and ecological connectivity maintenance should be included. This study provides a comprehensive understanding of the protection effects of EPR on ecological structure and function, and it has produced significant insights into improvements of the EPR policy. In addition, this paper proposes that the scope of resistance surface should be extended, which would improve the rationality of the ecological corridor simulation.


2021 ◽  
Vol 29 (1) ◽  
pp. 92-102
Author(s):  
Emil Akif oghlu Jabrayilov

The high growth rate of consumption of natural resources by people in the last century have seriously and negatively affected ecosystems and led to the loss of biodiversity. At present, it is important to take the necessary measures to ensure sustainable development and biodiversity conservation. Ecological networks play an important role in maintaining and controlling the stability and balance of communication between ecosystem complexes. For this purpose, the possibility of creating an ecological network that includes core areas, buffer zones, ecological corridors and restoration areas in the section of Shamakhi district of the Shahdagh National Park was explored. The designated buffer zone of the national park includes 14 villages and 1 settlement type administrative unit. Mountainous landscapes predominate in the area, and the absolute height ranges from 500-200 m. Riverbeds, intermountain depression, mountain passes, trails and forests which should be planted in the areas we offer, were considered as main factors during the construction of ecological corridors in the national park and the buffer zones. The materials obtained from the literature and our field studies, also, vector and raster data were used during the site identification. The data was processed in software such as ArcGIS 10, ERDAS Imagine, Global Mapper, Google Earth, etc. Existing ecosystems were identified, and areas were calculated in separate elements of the ecological network in the study area.


Land ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1320
Author(s):  
Etienne Lalechère ◽  
Laurent Bergès

Connectivity conservation analysis is based on a wide range of approaches designed to pinpoint key ecological corridors in order to maintain multispecies flows. However, the lack of validation procedures with accessible data prevents one from evaluating the accuracy of ecological corridor locations. We propose a new validation procedure to evaluate the accuracy of ecological corridor locations in landscape connectivity approaches. The ability of the procedure to properly rank the accuracy of different landscape connectivity approaches was illustrated in a study case. Maxent model and circuit theory were used to locate ecological corridors for forest bird species, following three approaches based on land cover, umbrella species and multispecies presence data. The validation procedure was used to compare the three approaches. Our validation procedure ranked the three approaches as expected, considering that accuracy in locating ecological corridors is related to the biological realism of calibration data. The corridors modelled were more accurate with species presence data (umbrella and multispecies approaches) compared to land cover proxy (habitat-based approach). These results confirm the quality of the validation procedure. Our validation procedure can be used to: (1) evaluate the accuracy of the location of ecological corridors; (2) select the best approach to locate ecological corridors, and (3) validate the underlying assumptions of landscape connectivity approaches (e.g., dispersal and matrix resistance values).


2021 ◽  
Vol 4 (2) ◽  
pp. 21
Author(s):  
Jiaojiao Wang ◽  
Fenli Chen ◽  
Weihong Wang ◽  
Libao Dou

The practice and research of ecological civilization is a focus of current planning and design, as well as a scientific strategy under the current situation of resource constraint, environmental degradation and ecosystem degradation. Urban elements such as buildings, green land, farmland,water systems and mountains can be connected by ecological corridors into a green ecological system design.At present, many ecological and environmental problems, such as urban heat island effect, fog and haze, automobile exhaust have a negative effect on the construction of social ecological environment. In order to build a new modern city with prosperous economy, beautiful environment and social civilization, scientific and efficient ecological corridors should be designed to improve the environmental quality of the eco-city, and promote the construction and development of ecological civilization and green cities. Based on the relevant research and specific practices of ecological corridors at home and abroad,combine the needs of the planning and construction of the Yuzhong Ecological Innovation City, and discuss on the connotation and characteristics of ecological corridors, and discuss the key elements of ecological corridor planning.This article will take the ecological corridor planning of Yuzhong Eco Innovation City as an example. We design ecological corridor based on field investigation, literature and geographic information system..The planning and design of the ecological corridor in the planning area proposed in this paper can provide positive suggestion on the planning and design of the ecological corridor in other ecological innovation cities.


2021 ◽  
Vol 13 (20) ◽  
pp. 11175
Author(s):  
Tsai-Fu Chuang ◽  
Yuan-Hsiou Chang

Ecological corridors are an essential element in conserving the biodiversity and proper functioning of ecosystems. Without their connectivity, a very large number of species would not have access to all of the habitats needed for their life cycles. Although the concept of an ecological corridor has been discussed for many years, few studies on ecological corridors for frogs have been conducted. Frogs are often considered to be a keystone species. They are a good indicator of habitat health, and they are often the first to be harmed by pollution or ecosystem deterioration. However, there have been reports of frogs crossing ecological corridors and being attacked or consumed by natural enemies. It is vital to create ecological corridors for frogs that allow them to migrate quickly and safely. The purpose of this study was to propose a new ecological corridor design concept for frogs to address the limitations mentioned above. In this paper, grey system theory was employed to offer the necessary information for the frog ladder’s design. In addition, the frog’s high jump capacity and its defense mechanisms against natural enemies were used to determine the rest space and shelter.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1201
Author(s):  
Pablo J. Hidalgo ◽  
Helena Hernández ◽  
Antonio J. Sánchez-Almendro ◽  
Javier López-Tirado ◽  
Federico Vessella ◽  
...  

Habitat loss and fragmentation are considered some the main threats to biodiversity. Original forests have suffered an accentuated fragmentation and agricultural homogenization, leaving only some areas of natural vegetation, relegated to strongly anthropized disconnected patches (island forests, IFs) in a hostile matrix. These patches of original vegetation could be the key for the design and management of ecological corridors to promote species migration, an essential strategy for meeting the consequences of Global Change. This study proposes a comparative analysis of the fragmentation and connectivity of IFs of Quercus in two typically Mediterranean areas of predominantly agricultural use: the Guadalquivir valley (Spain) and the Apulia region (Italy). A retrospective comparison is also carried out in the Guadalquivir valley. The aim is to develop an objective new methodology to locate the patches of most interest using quantitative and qualitative data. Reference cartography of current island forests of Quercus species was developed from several digital sources and validated with orthoimages and field observations. Fragmentation analysis was based on graph structures using the software Conefor 2.6, a reliable tool for assessment of the role of patches in the landscape. Area and distance were used as node and connector values. Dispersion distance was established as 500 m, based on the maximum dispersion of acorns. Results indicate that the Guadalquivir valley has suffered an intensive fragmentation in recent decades. Both the Guadalquivir and Apulia regions host some IFs with the relevant potential to contribute as core habitats in the creation of connections to other natural protected sites. Many residual IFs in the landscape could contribute as stepping stones in the design and management of ecological corridors. Our methodology highlights the value of IFs to develop assessment strategies using homogenized available digital cartography and common criteria for the dispersion distances in graph theory analysis. The application of this new methodology could help in the management of protected sites using highly fragmented areas to allow the species movement through inhospitable landscapes in a unique opportunity to connect the different protected areas.


Author(s):  
H.R. Yu ◽  
Y.Z. Wang ◽  
Z. Liang ◽  
C.K. Min

Various ecological problems have become increasingly prominent due to the accelerated growth of urbanization. Ecological security and ecological conservation have become an important topics in the current scenario. This study took southern Anhui as an example, constructing comprehensive assessment models to conduct source identification from three perspectives, i.e. ecosystem services, ecological sensitivity and residents’ ecological needs. Landscape resistance surface was built based on the reciprocal of habitat quality and night-time light data. According to the circuit theory, the ecological process in the heterogeneous landscape was simulated to identify ecological corridors, extract pinch points and divide barriers that need improvement, thereby to construct the southern Anhui ecological security pattern (ESP). The pattern comprised 20 ecological sources, 37 ecological corridors, 9 pinch points and 2 levels of improvement areas. Specifically, ecological sources were mainly distributed within the area of Huangshan city and Xuancheng city, mostly covered with trees; ecological corridors were mostly located in the northern part of the research area; pinch points were mainly farmland or beside construction land; the primary improvement area was mainly in Chaohu city and Maanshan city, while the secondary improvement area was distributed around the primary area. The study discussed the diversified improvement strategies of different barriers and introduced the optimization scheme “one centre, two wings, one belt”, providing planning advice for decision-makers. The study expanded the construction of regional ESP, and partly guided the steady development of ESP of southern Anhui.


Sign in / Sign up

Export Citation Format

Share Document