scholarly journals Dynamic Cooperative Clustering Based Power Assignment: Network Capacity and Lifetime Efficient Topology Control in Cooperative Ad Hoc Networks

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xiao-Hong Li ◽  
Ling Xiao ◽  
Dong Wang

Cooperative communication (CC) is used in topology control as it can reduce the transmission power and expand the transmission range. However, all previous research on topology control under the CC model focused on maintaining network connectivity and minimizing the total energy consumption, which would lead to low network capacity, transmission interruption, or even network paralysis. Meanwhile, without considering the balance of energy consumption in the network, it would reduce the network lifetime and greatly affect the network performance. This paper tries to solve the above problems existing in the research on topology control under the CC model by proposing a power assignment (DCCPA) algorithm based on dynamic cooperative clustering in cooperative ad hoc networks. The new algorithm clusters the network to maximize network capacity and makes the clusters communicate with each other by CC. To reduce the number of redundant links between clusters, we design a static clustering method by using Kruskal algorithm. To maximize the network lifetime, we also propose a cluster head rotating method which can reach a good tradeoff between residual energy and distance for the cluster head reselection. Experimental results show that DCCPA can improve 80% network capacity with Cooperative Bridges algorithm; meanwhile, it can improve 20% network lifetime.

Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1781
Author(s):  
Bhanumathi Velusamy ◽  
Kalaivanan Karunanithy ◽  
Damien Sauveron ◽  
Raja Naeem Akram ◽  
Jaehyuk Cho

The main goal is to find multiple node-disjoint paths that meet the multi-objective optimization problem in terms of energy consumption minimization and network lifetime improvement. Due to the battery-dependent nodes in mobile ad hoc networks, the performance of the network will degrade. Hence, it is necessary to choose multiple optimal node-disjoint paths between source and destination for data transfer. Additionally, it improves the Quality of Service (QoS) of wireless networks. Multi-objective function is used to select a path such that it gives an optimum result based on the energy consumption, hop, and traffic load. From the simulation results, it is proved that the proposed system is achieving less energy consumption and improved network lifetime compared with existing Dynamic Source Routing (DSR), Hopfield Neural Network-based Disjoint Path set Selection (HNNDPS) and Multipath DSR (MDSR).


2012 ◽  
Vol E95.B (9) ◽  
pp. 3047-3051 ◽  
Author(s):  
Xin AO ◽  
F. Richard YU ◽  
Shengming JIANG ◽  
Quansheng GUAN ◽  
Gang WEI

2011 ◽  
Vol 34 (7) ◽  
pp. 1342-1350 ◽  
Author(s):  
Xiao-Hong LI ◽  
Da-Fang ZHANG ◽  
Wen-Bin CHEN ◽  
Dong WANG

2021 ◽  
Author(s):  
Salah Abdulhadi

Cooperative transmission has been recently proposed as a promising technique to combat multi-path fading and increased link reliability. It represents a potential candidate to exploit the benefits of using multiple antennas system without requiring to implement multiple antennas per terminal. There has been extensive research investigating physical layer issues of such systems; however, higher layer protocols that exploit cooperative links in ad hoc networks are still emerging in cooperative ad hoc networks, and it is important to effectively use cooperation without affecting the performance of the network. In this dissertation, we proposed a novel a characterization of the optimal multi-hop cooperative routing in ad hoc networks, and developed a metric for both evaluation. The key advantages of cooperative links are to minimize the number of hops while maintaining the QoS requirements and to minimize the end-to-end total power for a given rate. Also we showed that energy can be used more efficiently if we determine the joint optimal packet size and the optimal power allocation for both the source and the relay. For multi-flow scenario, we have proposed a clique-based inter-flow interference abstraction, and used the linear programming formulation to study the capacity gain of ad-hoc cooperative network. It is observed that the network capacity in multi-hop multi-flow settings is severely affected by interference between links and this effect increases when the cooperative relaying is imposed.


Sign in / Sign up

Export Citation Format

Share Document