scholarly journals Cutting Force Predication Based on Integration of Symmetric Fuzzy Number and Finite Element Method

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Zhanli Wang ◽  
Yanjuan Hu ◽  
Yao Wang ◽  
Chao Dong ◽  
Zaixiang Pang

In the process of turning, pointing at the uncertain phenomenon of cutting which is caused by the disturbance of random factors, for determining the uncertain scope of cutting force, the integrated symmetric fuzzy number and the finite element method (FEM) are used in the prediction of cutting force. The method used symmetric fuzzy number to establish fuzzy function between cutting force and three factors and obtained the uncertain interval of cutting force by linear programming. At the same time, the change curve of cutting force with time was directly simulated by using thermal-mechanical coupling FEM; also the nonuniform stress field and temperature distribution of workpiece, tool, and chip under the action of thermal-mechanical coupling were simulated. The experimental result shows that the method is effective for the uncertain prediction of cutting force.

2009 ◽  
Vol 626-627 ◽  
pp. 249-254
Author(s):  
Wang Yu Liu ◽  
X.K. Liu ◽  
Jing Li ◽  
Yong Zhang

Combined the analytic method with the finite element method, the data necessary for calculating the heat distribution ratio for high speed cutting was mined first, and the experimental result was used to validate the authenticity of finite element modeling. Then, the ratio of heat distribution for high speed cutting based on the analytic model was obtained by customizing the special subroutine developed by the authors, which provides a new method for calculating the heat distribution.


2019 ◽  
Vol 3 (1) ◽  
pp. 54-68
Author(s):  
Varun Sharma ◽  
Pulak M. Pandey ◽  
Uday S. Dixit ◽  
Anish Roy ◽  
Vadim V. Silberschmidt

This paper investigates the performance of conventional turning and ultrasonically assisted turning (UAT) processes with plane and textured cutting inserts. Simulations based on the finite-element method were carried out using a software package ABAQUS/Explicit (Dassault Systemes, France). The obtained results were validated experimentally by employing a specially developed UAT setup. The purpose of the paper is to analyze cutting-force variation by the use of textured cutting inserts. Optimized dimensions of the texture pattern were used to model textured cutting inserts. The cutting-force variation in UAT was assessed with finite-element method, confirming diminishing cutting forces at a tool–workpiece interface during a noncontact time. The use of the textured cutting inserts in the UAT process resulted in the lowest cutting forces when compared to a plane tool in UAT as well as both plane and textured tools in the conventional turning process.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20868-20875 ◽  
Author(s):  
Junxiong Guo ◽  
Yu Liu ◽  
Yuan Lin ◽  
Yu Tian ◽  
Jinxing Zhang ◽  
...  

We propose a graphene plasmonic infrared photodetector tuned by ferroelectric domains and investigate the interfacial effect using the finite element method.


1999 ◽  
Vol 09 (PR9) ◽  
pp. Pr9-217-Pr9-226
Author(s):  
H. Ouazzani Touhami ◽  
J. C. Debus ◽  
L. Buchaillot

Sign in / Sign up

Export Citation Format

Share Document