scholarly journals An Improved User Authentication Protocol for Healthcare Services via Wireless Medical Sensor Networks

2014 ◽  
Vol 10 (4) ◽  
pp. 347169 ◽  
Author(s):  
Muhammad Khurram Khan ◽  
Saru Kumari
2019 ◽  
Vol 10 (1) ◽  
pp. 96-116 ◽  
Author(s):  
Preeti Chandrakar

The wireless medical sensor networks WMSN play a crucial role in healthcare monitoring remotely. In remote healthcare monitoring, the sensor nodes are deployed in patient's body for collecting physiological data and transmit these data over an insecure channel. The patient's health information is highly sensitive and important. Any malicious modification in physiological data will make wrong diagnoses and harm the patient health. Therefore, privacy, data security, and user authentication are extremely important for accessing patient's real-time heath information over an insecure channel. In this regard, this article proposes a secure and robust two-factor based remote user authentication protocol for healthcare monitoring. The authentication proof has done with the help of BAN logic, which ensures that the proposed scheme provides mutual authentication and session key agreement securely. The informal security verification proves that the developed protocol is secure from various security attacks. The simulation of the proposed scheme has been done using AVISPA tool, whose simulation results confirm that the proposed scheme is secure from active and passive attacks. Performance evaluation shows that the proposed protocol is efficient in terms of security features, computation cost, communication cost, and execution time.


Author(s):  
Preeti Chandrakar

The wireless medical sensor networks WMSN play a crucial role in healthcare monitoring remotely. In remote healthcare monitoring, the sensor nodes are deployed in patient's body for collecting physiological data and transmit these data over an insecure channel. The patient's health information is highly sensitive and important. Any malicious modification in physiological data will make wrong diagnoses and harm the patient health. Therefore, privacy, data security, and user authentication are extremely important for accessing patient's real-time heath information over an insecure channel. In this regard, this article proposes a secure and robust two-factor based remote user authentication protocol for healthcare monitoring. The authentication proof has done with the help of BAN logic, which ensures that the proposed scheme provides mutual authentication and session key agreement securely. The informal security verification proves that the developed protocol is secure from various security attacks. The simulation of the proposed scheme has been done using AVISPA tool, whose simulation results confirm that the proposed scheme is secure from active and passive attacks. Performance evaluation shows that the proposed protocol is efficient in terms of security features, computation cost, communication cost, and execution time.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6039
Author(s):  
DeokKyu Kwon ◽  
YoHan Park ◽  
YoungHo Park

Wireless medical sensor networks (WMSNs) are used in remote medical service environments to provide patients with convenient healthcare services. In a WMSN environment, patients wear a device that collects their health information and transmits the information via a gateway. Then, doctors make a diagnosis regarding the patient, utilizing the health information. However, this information can be vulnerable to various security attacks because the information is exchanged via an insecure channel. Therefore, a secure authentication scheme is necessary for WMSNs. In 2021, Masud et al. proposed a lightweight and anonymity-preserving user authentication scheme for healthcare environments. We discover that Masud et al.’s scheme is insecure against offline password guessing, user impersonation, and privileged insider attacks. Furthermore, we find that Masud et al.’s scheme cannot ensure user anonymity. To address the security vulnerabilities of Masud et al.’s scheme, we propose a three-factor-based mutual authentication scheme with a physical unclonable function (PUF). The proposed scheme is secure against various security attacks and provides anonymity, perfect forward secrecy, and mutual authentication utilizing biometrics and PUF. To prove the security features of our scheme, we analyze the scheme using informal analysis, Burrows–Abadi–Needham (BAN) logic, the Real-or-Random (RoR) model, and Automated Verification of Internet Security Protocols and Applications (AVISPA) simulation. Furthermore, we estimate our scheme’s security features, computation costs, communication costs, and energy consumption compared with the other related schemes. Consequently, we demonstrate that our scheme is suitable for WMSNs.


Sign in / Sign up

Export Citation Format

Share Document