scholarly journals Sliding Mode Variable Structure Control and Real-Time Optimization of Dry Dual Clutch Transmission during the Vehicle’s Launch

2014 ◽  
Vol 2014 ◽  
pp. 1-18 ◽  
Author(s):  
Zhiguo Zhao ◽  
Haijun Chen ◽  
Qi Wang

In order to reflect driving intention adequately and improve the launch performance of vehicle equipped with five-speed dry dual clutch transmission (DCT), the issue of coordinating control between engine and clutch is researched, which is based on the DCT and prototype car developed independently. Four-degree-of-freedom (DOF) launch dynamics equations are established. Taking advantage of predictive control and genetic algorithm, target tracing curves of engine speed and vehicle velocity are optimally specified. Sliding mode variable structure (SMVS) control strategy is designed to track these curves. The rapid prototyping experiment and test are, respectively, conducted on the DCT test bench and in the chassis dynamometer. Results show that the designed SMVS control strategy not only effectively embodies the driver’s intention but also has strong robustness to the vehicle parameter’s variations.

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 221
Author(s):  
Guishan Yan ◽  
Zhenlin Jin ◽  
Tiangui Zhang ◽  
Penghui Zhao

In steam turbine control and actuation, the steam control valve plays a key role in operability and reliability. The electrohydraulic regulating system for the steam control valve, usually called the servomotor, needs to be reliable and high performing under nonlinear excitation interference in actual conditions. Currently, electrohydraulic servo valve control technology is widely used in servomotors. Although this technology has good control performance, it still has some technical defects, such as poor antipollution ability, low energy efficiency, large volume size, and limited installation space. Aiming at the abovementioned technical shortcomings of electrohydraulic servo valve control technology, a servomotor-pump-hydraulic cylinder volume control scheme is proposed in this paper, forming a pump-controlled servomotor for the steam control valve. By analyzing the working principle of the pump-controlled servomotor position control in the steam control valve, the mathematical model of a pump-controlled servomotor for the steam control valve is established. The sliding mode variable structure control strategy is proposed, and the variable structure control law is solved by constructing a switching function. To verify the performance of the proposed control method, experimental research was conducted. The research results show that the proposed sliding mode variable structure control strategy has a good control effect, which lays the theoretical and technical foundation for the engineering application and promotion of pump-controlled servomotors for steam control valves and helps the technical upgrade and product optimization of steam turbines.


2014 ◽  
Vol 1028 ◽  
pp. 186-190
Author(s):  
Hong Cheng Zhou ◽  
Zhi Peng Jiang

The servo control methods of 6-DOF motion configuration are researched. Based on analysis for characteristic of the motion configuration, the control strategy and control law used on the motion control system are presented. The controller in velocity tracking loop and location loop are respectively designed by frequency correcting method and normal control method which belongs to classical control theory. Sliding mode variable structure control method is presented for location control law designing, against the super low velocity creep caused by friction disturbance, so that the problem of location control loop low velocity creeping is solved, and a simulating experimentation demonstrate the effectiveness of the proposed approach.


2012 ◽  
Vol 233 ◽  
pp. 158-162 ◽  
Author(s):  
Hao Zeng ◽  
Rui Bo Yuan ◽  
Zu Shun He ◽  
Peng Yi

For a series of non-linear factors of compression, friction, air pressure and load changing in the pneumatic system, it impact seriously on low-speed precision and stability of the pneumatic servo system. As the sliding mode variable structure has a good anti-interference ability and capacity of the model parameter perturbation, In this paper we use the above control strategy to solve the unmodeled part of the pneumatic system dynamics and bounded disturbances, so it can improve accuracy and stability of the aerodynamic servo system. The simulation results indicate that the system combined with sliding mode variable structure strategy has better anti-jamming capability and response speed than the traditional PID control strategy.


Sign in / Sign up

Export Citation Format

Share Document