scholarly journals Novel Low Spin Mixed Ligand Thiohydrazide Complexes of Iron(III): Synthesis, Spectral Characterization, Molecular Modeling, and Antibacterial Activity

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Dolan Sengupta ◽  
Snigdha Gangopadhyay ◽  
Sanchita Goswami ◽  
Arnab Dutta ◽  
Vikash Kumar ◽  
...  

Mixed ligand complexes of Fe(III) with aromatic thiohydrazides of general composition [Fe(acac)(L)2] have been synthesized and characterized (acac-acetylacetonate, L = bidentate uninegative aromatic thiohydrazide ligand, for example, thiobenzhydrazide, 2-hydroxythiobenzhydrazide, furan-2-thiohydrazide, and thiophen-2-thiohydrazide). The magnetic susceptibility data and the EPR spectra of these complexes suggested the formation of rhombically distorted low spin iron center (d5) in octahedral environment, which was also supported by the UV-vis spectral data of the complexes. Biological studies of these complexes also indicated that the iron-thiohydrazido complexes have superior antibacterial properties compared to the corresponding ligands.

2002 ◽  
Vol 57 (10) ◽  
pp. 1129-1132 ◽  
Author(s):  
A. Elmali ◽  
Y. Elerman ◽  
I. Svoboda

The mixed-ligand dinuclear complex (2,2'-dipyridyl)-(2-acetylphenolato)copper(II) perchlorate was synthesized and its crystal structures determined. The structure consists of a dimeric unit involving a planar Cu2O2 group. The coordination sphere of the Cu atom can be described as an alongated octahedron where the basal plane is formed by the two N atoms of the 2,2'-dipyridyl molecule and the two O atoms of the acetophenon anion. Two apical Cu - O contacts complete the 4+2 coordination of the Cu atoms. They correspond to one of the O atoms of the perchlorate anion and to the O atom of the second unit. Magnetic susceptibility data obey the Curie-Weiss law with θ = -8.1(2) K. The decreasing of the effective magnetic moment from 1.94(8) μB at 300 K to 1.86(8) μB at 70 K and the negative Weiss constant indicate weak antiferromagnetic interactions between the two copper atoms in the dimeric units.


2021 ◽  
Vol 7 (7) ◽  
pp. 99
Author(s):  
Linh Trinh ◽  
Eric Rivière ◽  
Sandra Mazerat ◽  
Laure Catala ◽  
Talal Mallah

The collective magnetic behavior of photoswitchable 11 nm cyanide-bridged nanoparticles based of the Prussian blue analogue CsCoFe were investigated when embedded in two different matrices with different concentrations. The effect of the intensity of light irradiation was studied in the less concentrated sample. Magnetization studies and alternating magnetic susceptibility data are consistent with a collective magnetic behavior due to interparticle dipolar magnetic interaction for the two compounds, even though the objects have a size that place them in the superparamagnetic regime.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3854
Author(s):  
Joanna Czechowska ◽  
Ewelina Cichoń ◽  
Anna Belcarz ◽  
Anna Ślósarczyk ◽  
Aneta Zima

Bioactive, chemically bonded bone substitutes with antibacterial properties are highly recommended for medical applications. In this study, biomicroconcretes, composed of silicon modified (Si-αTCP) or non-modified α-tricalcium phosphate (αTCP), as well as hybrid hydroxyapatite/chitosan granules non-modified and modified with gold nanoparticles (AuNPs), were designed. The developed biomicroconcretes were supposed to combine the dual functions of antibacterial activity and bone defect repair. The chemical and phase composition, microstructure, setting times, mechanical strength, and in vitro bioactive potential of the composites were examined. Furthermore, on the basis of the American Association of Textile Chemists and Colorists test (AATCC 100), adapted for chemically bonded materials, the antibacterial activity of the biomicroconcretes against S. epidermidis, E. coli, and S. aureus was evaluated. All biomicroconcretes were surgically handy and revealed good adhesion between the hybrid granules and calcium phosphate-based matrix. Furthermore, they possessed acceptable setting times and mechanical properties. It has been stated that materials containing AuNPs set faster and possess a slightly higher compressive strength (3.4 ± 0.7 MPa). The modification of αTCP with silicon led to a favorable decrease of the final setting time to 10 min. Furthermore, it has been shown that materials modified with AuNPs and silicon possessed an enhanced bioactivity. The antibacterial properties of all of the developed biomicroconcretes against the tested bacterial strains due to the presence of both chitosan and Au were confirmed. The material modified simultaneously with AuNPs and silicon seems to be the most promising candidate for further biological studies.


1989 ◽  
Vol 175 ◽  
Author(s):  
Wolfgang Haase ◽  
Stefan Gehring ◽  
Bettina Borchers

AbstractMagnetic susceptibility data (300–520 K) of monomeric and dimeric mesogenic copper(II) compounds are presented. Different magnetic effects arising from the paramagnetic Cu(II)-centres and the diamagnetic anisotropy of the mesogenic groups are observed and discussed with respect to possible inter molecular interactions.


Sign in / Sign up

Export Citation Format

Share Document