scholarly journals Hybrid Bernstein Block-Pulse Functions Method for Second Kind Integral Equations with Convergence Analysis

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mohsen Alipour ◽  
Dumitru Baleanu ◽  
Fereshteh Babaei

We introduce a new combination of Bernstein polynomials (BPs) and Block-Pulse functions (BPFs) on the interval [0, 1]. These functions are suitable for finding an approximate solution of the second kind integral equation. We call this method Hybrid Bernstein Block-Pulse Functions Method (HBBPFM). This method is very simple such that an integral equation is reduced to a system of linear equations. On the other hand, convergence analysis for this method is discussed. The method is computationally very simple and attractive so that numerical examples illustrate the efficiency and accuracy of this method.

2020 ◽  
Vol 39 (3) ◽  
pp. 3971-3985 ◽  
Author(s):  
Muhammad Saqib ◽  
Muhammad Akram ◽  
Shahida Bashir

A bipolar fuzzy set model is an extension of fuzzy set model. We develop new iterative methods: generalized Jacobi, generalized Gauss-Seidel, refined Jacobi, refined Gauss-seidel, refined generalized Jacobi and refined generalized Gauss-seidel methods, for solving bipolar fuzzy system of linear equations(BFSLEs). We decompose n ×  n BFSLEs into 4n ×  4n symmetric crisp linear system. We present some results that give the convergence of proposed iterative methods. We solve some BFSLEs to check the validity, efficiency and stability of our proposed iterative schemes. Further, we compute Hausdorff distance between the exact solutions and approximate solution of our proposed schemes. The numerical examples show that some proposed methods converge for the BFSLEs, but Jacobi and Gauss-seidel iterative methods diverge for BFSLEs. Finally, comparison tables show the performance, validity and efficiency of our proposed iterative methods for BFSLEs.


2020 ◽  
Vol 12 (1) ◽  
pp. 60-71
Author(s):  
Firew Hailu ◽  
Genanew Gofe Gonfa ◽  
Hailu Muleta Chemeda

In this paper, a second degree generalized successive over relaxation iterative method for solving system of linear equations based on the decomposition  A= Dm+Lm+Um  is presented and the convergence properties of the proposed method are discussed. Two numerical examples are considered to show the efficiency of the proposed method. The results presented in tables show that the Second Degree Generalized Successive Over Relaxation Iterative method is more efficient than the other methods considered based on number of iterations, computational running time and accuracy. Keywords: Second Degree, Generalized Gauss Seidel, Successive over relaxation, Convergence.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaobin Guo ◽  
Dequan Shang

The approximate solution ofnth-order fuzzy linear differential equations in which coefficient functions maintain the sign is investigated by the undetermined fuzzy coefficients method. The differential equations is converted to a crisp function system of linear equations according to the operations of fuzzy numbers. The fuzzy approximate solution of the fuzzy linear differential equation is obtained by solving the crisp linear equations. Some numerical examples are given to illustrate the proposed method. It is an extension of Allahviranloo's results.


Author(s):  
David Ek ◽  
Anders Forsgren

AbstractThe focus in this paper is interior-point methods for bound-constrained nonlinear optimization, where the system of nonlinear equations that arise are solved with Newton’s method. There is a trade-off between solving Newton systems directly, which give high quality solutions, and solving many approximate Newton systems which are computationally less expensive but give lower quality solutions. We propose partial and full approximate solutions to the Newton systems. The specific approximate solution depends on estimates of the active and inactive constraints at the solution. These sets are at each iteration estimated by basic heuristics. The partial approximate solutions are computationally inexpensive, whereas a system of linear equations needs to be solved for the full approximate solution. The size of the system is determined by the estimate of the inactive constraints at the solution. In addition, we motivate and suggest two Newton-like approaches which are based on an intermediate step that consists of the partial approximate solutions. The theoretical setting is introduced and asymptotic error bounds are given. We also give numerical results to investigate the performance of the approximate solutions within and beyond the theoretical framework.


2018 ◽  
Vol 15 (03) ◽  
pp. 1850016 ◽  
Author(s):  
A. A. Hemeda

In this work, a simple new iterative technique based on the integral operator, the inverse of the differential operator in the problem under consideration, is introduced to solve nonlinear integro-differential and systems of nonlinear integro-differential equations (IDEs). The introduced technique is simpler and shorter in its computational procedures and time than the other methods. In addition, it does not require discretization, linearization or any restrictive assumption of any form in providing analytical or approximate solution to linear and nonlinear equations. Also, this technique does not require calculating Adomian’s polynomials, Lagrange’s multiplier values or equating the terms of equal powers of the impeding parameter which need more computational procedures and time. These advantages make it reliable and its efficiency is demonstrated with numerical examples.


2016 ◽  
Vol 47 (2) ◽  
pp. 179-192
Author(s):  
Tesfaye Kebede Enyew

In this paper, a Second degree generalized Jacobi Iteration method for solving system of linear equations, $Ax=b$ and discuss about the optimal values $a_{1}$ and $b_{1}$ in terms of spectral radius about for the convergence of SDGJ method of $x^{(n+1)}=b_{1}[D_{m}^{-1}(L_{m}+U_{m})x^{(n)}+k_{1m}]-a_{1}x^{(n-1)}.$ Few numerical examples are considered to show that the effective of the Second degree Generalized Jacobi Iteration method (SDGJ) in comparison with FDJ, FDGJ, SDJ.


1924 ◽  
Vol 22 (3) ◽  
pp. 282-286
Author(s):  
E. C. Titchmarsh

I have collected in the present note some theorems regarding the solution of a certain system of linear equations with an infinity of unknowns. The general form of the equations isthe numbers a1, a2, … c1, c2, … being given. Equations of this type are of course well known; but in studying them it is generally assumed that the series depend for convergence on the convergence-exponent of the sequences involved, e.g. that and are convergent. No assumptions of this kind are made here, and in fact the series need not be absolutely convergent. On the other hand rather special assumptions are made with regard to the monotonic character of the sequences an and cn.


2020 ◽  
Author(s):  
Mikhail Kruglyakov ◽  
Alexey Kuvshinov

<p> In this contribution, we present novel global 3-D electromagnetic forward solver based on a numerical solution of integral equation (IE) with contracting kernel. Compared to widely used x3dg code which is also based on IE approach, new solver exploits alternative (more efficient and accurate) numerical algorithms to calculate Green’s tensors, as well as an alternative (Galerkin) method to construct the system of linear equations (SLE). The latter provides guaranteed convergence of the iterative solution of SLE. The solver outperforms x3dg in terms of accuracy, and, in contrast to (sequential) x3dg, it allows for efficient parallel computations, meaning that the code has practically linear scalability up to the hundreds of processors.</p>


1949 ◽  
Vol 2 (4) ◽  
pp. 428-451 ◽  
Author(s):  
E. R. LOVE

Abstract In the earliest discussion of this problem Nicholson (1) expressed the potential as a series of spheroidal harmonics with coefficients satisfying an infinite system of linear equations, and gave a formula for an explicit solution; but this formula appears to be meaningless and its derivation to contain serious errors. In the present paper, starting tentatively from Nicholson's infinite system of linear equations, a much simpler, though still implicit, specification of the potential is developed; this involves a Fredholm integral equation the existence and uniqueness of whose solution are deducible from standard theory. The specification so obtained for the potential is shown rigorously to satisfy the differential equation and boundary conditions of the electrostatic problem. The Neumann series of the integral equation is shown to converge to its solution, so that the potential, and other aspects of the field, can be explicitly formulated and thus computed. The errors in Nicholson's process of solving his system of equations are exhibited in detail, and it is concluded that attempts to carry through that process without error cannot lead to an explicit solution.


Author(s):  
Ali H. M. Murid ◽  
Mohmed M. A. Alagele ◽  
Mohamed M. S. Nasser

This research is about computing the Green’s functions on simply connected regions by using the method of boundary integral equation. The method depends on solving a Dirichlet problem using a uniquely solvable Fredholm integral equation on the boundary of the region. The kernel of this integral equation is the generalized Neumann kernel. The numerical method for solving this integral equation is the Nystrӧm method with trapezoidal rule which leads to a system of linear equations. The linear system is then solved by the Gaussian elimination method. Mathematica plot of Green’s function for atest region is also presented.


Sign in / Sign up

Export Citation Format

Share Document