spheroidal harmonics
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 11)

H-INDEX

13
(FIVE YEARS 1)

Author(s):  
Gleb Aminov ◽  
Alba Grassi ◽  
Yasuyuki Hatsuda

AbstractWe present new analytic results on black hole perturbation theory. Our results are based on a novel relation to four-dimensional $${\mathcal {N}}=2$$ N = 2 supersymmetric gauge theories. We propose an exact version of Bohr-Sommerfeld quantization conditions on quasinormal mode frequencies in terms of the Nekrasov partition function in a particular phase of the $$\Omega $$ Ω -background. Our quantization conditions also enable us to find exact expressions of eigenvalues of spin-weighted spheroidal harmonics. We test the validity of our conjecture by comparing against known numerical results for Kerr black holes as well as for Schwarzschild black holes. Some extensions are also discussed.


2021 ◽  
Author(s):  
◽  
Matt Majic

<p>This thesis deals with solutions to Laplace's equation in 3D, finding new relationships between solutions, manipulating these to find new approaches to physical problems, and proposing a new class of solutions. We mainly consider spherical and prolate spheroidal geometry and their corresponding solutions - spherical and spheroidal solid harmonics. We first present new relationships between these, expressing for example spherical harmonics as a series of spheroidal harmonics. Similar relationships are known but we work with the spherical and spheroidal coordinate systems being offset from each other. We also propose a new class of solutions which we call logopoles which have many links with spherical and spheroidal harmonics, and are related to the potential created by simple finite line charge distributions. Through the logopoles we find another relationship between the spheroidal harmonics and the often discarded alternate spherical harmonics. Then we apply one of the new spherical-spheroidal harmonic relationships to problems involving a point charge/dipole outside a dielectric sphere. We find new solutions where the potential is expanded as a series of spheroidal harmonics instead of the standard spherical ones, and we show that the convergence is much faster. We also solve these problems with logopoles and the solutions converge even faster, although they are more complicated as they involve a combination of logopoles and spherical harmonics.</p>


2021 ◽  
Author(s):  
◽  
Matt Majic

<p>This thesis deals with solutions to Laplace's equation in 3D, finding new relationships between solutions, manipulating these to find new approaches to physical problems, and proposing a new class of solutions. We mainly consider spherical and prolate spheroidal geometry and their corresponding solutions - spherical and spheroidal solid harmonics. We first present new relationships between these, expressing for example spherical harmonics as a series of spheroidal harmonics. Similar relationships are known but we work with the spherical and spheroidal coordinate systems being offset from each other. We also propose a new class of solutions which we call logopoles which have many links with spherical and spheroidal harmonics, and are related to the potential created by simple finite line charge distributions. Through the logopoles we find another relationship between the spheroidal harmonics and the often discarded alternate spherical harmonics. Then we apply one of the new spherical-spheroidal harmonic relationships to problems involving a point charge/dipole outside a dielectric sphere. We find new solutions where the potential is expanded as a series of spheroidal harmonics instead of the standard spherical ones, and we show that the convergence is much faster. We also solve these problems with logopoles and the solutions converge even faster, although they are more complicated as they involve a combination of logopoles and spherical harmonics.</p>


Author(s):  
Dmitry Ponomarev

We consider convolution integral equations on a finite interval with a real-valued kernel of even parity, a problem equivalent to finding a Wiener–Hopf factorization of a notoriously difficult class of 2 × 2 matrices. The kernel function is assumed to be sufficiently smooth and decaying for large values of the argument. Without loss of generality, we focus on a homogeneous equation and we propose methods to construct explicit asymptotic solutions when the interval size is large and small. The large interval method is based on a reduction of the original equation to an integro-differential equation on a half-line that can be asymptotically solved in a closed form. This provides an alternative to other asymptotic techniques that rely on fast (typically exponential) decay of the kernel function at infinity, which is not assumed here. We also consider the problem on a small interval and show that finding its asymptotic solution can be reduced to solving an ODE. In particular, approximate solutions could be constructed in terms of readily available special functions (prolate spheroidal harmonics). Numerical illustrations of the obtained results are provided and further extensions of both methods are discussed.


2021 ◽  
Vol 146 (4) ◽  
pp. 953-982
Author(s):  
Sean R. Dawson ◽  
Holger R. Dullin ◽  
Diana M. H. Nguyen

2020 ◽  
Vol 46 (3) ◽  
pp. 123-135
Author(s):  
Mostafa Kiani ◽  
Nabi Chegini ◽  
Abdolreza Safari ◽  
Borzoo Nazari

The aim of this paper is to study the spline interpolation problem in spheroidal geometry. We follow the minimization of the norm of the iterated Beltrami-Laplace and consecutive iterated Helmholtz operators for all functions belonging to an appropriate Hilbert space defined on the spheroid. By exploiting surface Green’s functions, reproducing kernels for discrete Dirichlet and Neumann conditions are constructed in the spheroidal geometry. According to a complete system of surface spheroidal harmonics, generalized Green’s functions are also defined. Based on the minimization problem and corresponding reproducing kernel, spline interpolant which minimizes the desired norm and satisfies the given discrete conditions is defined on the spheroidal surface. The application of the results in Geodesy is explained in the gravity data interpolation over the globe.


2020 ◽  
Vol 17 (09) ◽  
pp. 2050143
Author(s):  
Gülni̇hal Tokgöz ◽  
İzzet Sakallı

In this work, the Dirac equation is studied in the [Formula: see text] Lifshitz black hole ([Formula: see text]LBH) spacetime. The set of equations representing the Dirac equation in the Newman–Penrose (NP) formalism is decoupled into a radial set and an angular set. The separation constant is obtained with the aid of the spin weighted spheroidal harmonics. The radial set of equations, which are independent of mass, is reduced to Zerilli equations (ZEs) with their associated potentials. In the near horizon (NH) region, these equations are solved in terms of the Bessel functions of the first and second kinds arising from the fermionic perturbation on the background geometry. For computing the boxed quasinormal modes (BQNMs) instead of the ordinary quasinormal modes (QNMs), we first impose the purely ingoing wave condition at the event horizon. Then, Dirichlet boundary condition (DBC) and Newmann boundary condition (NBC) are applied in order to get the resonance conditions. For solving the resonance conditions, we follow the Hod’s iteration method. Finally, Maggiore’s method (MM) is employed to derive the entropy/area spectra of the [Formula: see text]LBH which are shown to be equidistant.


2020 ◽  
Vol 8 (1) ◽  
pp. 32 ◽  
Author(s):  
Ioannis K. Chatjigeorgiou ◽  
Eva Loukogeorgaki ◽  
Eirini Anastasiou ◽  
Nikos Mantadakis

This study exploits the Touvia Miloh oblate spheroid theorem with a special focus on hydrodynamical applications. The theorem provides explicit relations that express the oblate spheroidal harmonics, given in terms of the fundamental solutions of the Laplace equation. Here, the theorem is employed to transform the underlying Green’s function into the relevant coordinate system and, consequently, to formulate the diffraction potential. The case considered refers to the axisymmetric placement of the spheroid, namely, symmetrical axis perpendicular to the free surface. The mathematical formulations have been implemented numerically providing exceptionally accurate computations, which manifests the consistency and robustness of the relevant formulas.


Sign in / Sign up

Export Citation Format

Share Document