scholarly journals High Accuracy Attitude Control System Design for Satellite with Flexible Appendages

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Wenya Zhou ◽  
Haixu Wang ◽  
Zhengwei Ruan ◽  
Zhigang Wu ◽  
Enmei Wang

In order to realize the high accuracy attitude control of satellite with flexible appendages, attitude control system consisting of the controller and structural filter was designed. When the low order vibration frequency of flexible appendages is approximating the bandwidth of attitude control system, the vibration signal will enter the control system through measurement device to bring impact on the accuracy or even the stability. In order to reduce the impact of vibration of appendages on the attitude control system, the structural filter is designed in terms of rejecting the vibration of flexible appendages. Considering the potential problem of in-orbit frequency variation of the flexible appendages, the design method for the adaptive notch filter is proposed based on the in-orbit identification technology. Finally, the simulation results are given to demonstrate the feasibility and effectiveness of the proposed design techniques.

Author(s):  
Nicolas Guy ◽  
Daniel Alazard ◽  
Christelle Cumer ◽  
Catherine Charbonnel

This article describes a general framework to generate linearized models of satellites with large flexible appendages. The obtained model is parameterized according to the tilt of flexible appendages and can be used to validate an attitude control system over a complete revolution of the appendage. Uncertainties on the characteristic parameters of each substructure can be easily considered by the proposed generic and systematic multibody modeling technique, leading to a minimal linear fractional transformation (LFT) model. The uncertainty block has a direct link with the physical parameters avoiding nonphysical parametric configurations. This approach is illustrated to analyze the attitude control system of a spacecraft fitted with a tiltable flexible solar panel. A very simple root locus allows the stability of the closed-loop system to be characterized for a complete revolution of the solar panel.


2014 ◽  
Vol 602-605 ◽  
pp. 834-843
Author(s):  
An Huang ◽  
Zhong Xi Hou

For the steering engine fault of ducted fan UAV that may arise during the hovering, designing adaptive controller for attitude control. First, concentrating on modeling of the hovering state of ducted fan UAV, and getting the relationship between steering engine and attitude control. Then analyzing the impact of steering engine fault on the attitude control system basing on the control model. Finally, designing model reference adaptive controller basing on the fault model, so that the ducted fan UAV can maintain good attitude control if steering engine fault occurs during the hovering. Simulation results show that when steering engine fault occurs, the model reference adaptive controller can effectively inhibit the adverse effects brought by steering engine fault, so the attitude control system has strong adaptability and robustness.


1973 ◽  
Author(s):  
D. SHREWSBERRY ◽  
T. BUDNEY ◽  
D. RILEY ◽  
B. SCHULER

2007 ◽  
Vol 3 (S248) ◽  
pp. 294-295
Author(s):  
M. Yamauchi ◽  
N. Gouda ◽  
Y. Kobayashi ◽  
T. Tsujimoto ◽  
T. Yano ◽  
...  

AbstractWe have developped a software of Star-Image-Extractor (SIE) which works as the on-board real-time image processor. It detects and extracts only the object data from raw image data. SIE has two functions: reducing image data and providing data for the satellite's high accuracy attitude control system.


Author(s):  
Shinya FUJITA ◽  
Yuji SATO ◽  
Toshinori KUWAHARA ◽  
Yuji SAKAMOTO ◽  
Yoshihiko SHIBUYA ◽  
...  

1980 ◽  
Author(s):  
F. FLOYD ◽  
C. MUCH ◽  
N. SMITH ◽  
J. VERNAU ◽  
J. WOODS

Sign in / Sign up

Export Citation Format

Share Document