scholarly journals Existence of Solutions of Fractional Differential Equation withp-Laplacian Operator at Resonance

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Zhigang Hu ◽  
Wenbin Liu ◽  
Jiaying Liu

By using the extension of Mawhin’s continuation theorem due to Ge, we consider boundary value problems for fractionalp-Laplacian equation. A new result on the existence of solutions for the fractional boundary value problem is obtained, which generalizes and enriches some known results to some extent from the literature.


2018 ◽  
Vol 1 (1) ◽  
pp. 56-80
Author(s):  
Assia Guezane-Lakoud ◽  
Kheireddine Belakroum

AbstractThis paper deals with the existence of solutions for a class of boundary value problem (BVP) of fractional differential equation with three point conditions via Leray-Schauder nonlinear alternative. Moreover, the existence of nonnegative solutions is discussed.



2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Hüseyin Aktuğlu ◽  
Mehmet Ali Özarslan

We consider the model of a Caputo -fractional boundary value problem involving -Laplacian operator. By using the Banach contraction mapping principle, we prove that, under some conditions, the suggested model of the Caputo -fractional boundary value problem involving -Laplacian operator has a unique solution for both cases of and . It is interesting that in both cases solvability conditions obtained here depend on , , and the order of the Caputo -fractional differential equation. Finally, we illustrate our results with some examples.



2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Yongqing Wang ◽  
Lishan Liu ◽  
Yonghong Wu

We discuss the existence of positive solutions of a boundary value problem of nonlinear fractional differential equation with changing sign nonlinearity. We first derive some properties of the associated Green function and then obtain some results on the existence of positive solutions by means of the Krasnoselskii's fixed point theorem in a cone.



2012 ◽  
Vol 22 (04) ◽  
pp. 1250086 ◽  
Author(s):  
FENG JIAO ◽  
YONG ZHOU

In this paper, by the critical point theory, the boundary value problem is discussed for a fractional differential equation containing the left and right fractional derivative operators, and various criteria on the existence of solutions are obtained. To the authors' knowledge, this is the first time, the existence of solutions to the fractional boundary value problem is dealt with by using critical point theory.



Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1937
Author(s):  
Abdellatif ‬Boutiara ◽  
Mohammed S. ‬Abdo ◽  
Mohammed A. ‬Almalahi ◽  
Hijaz Ahmad ◽  
Amira Ishan

This research paper is dedicated to the study of a class of boundary value problems for a nonlinear, implicit, hybrid, fractional, differential equation, supplemented with boundary conditions involving general fractional derivatives, known as the ϑ-Hilfer and ϑ-Riemann–Liouville fractional operators. The existence of solutions to the mentioned problem is obtained by some auxiliary conditions and applied Dhage’s fixed point theorem on Banach algebras. The considered problem covers some symmetry cases, with respect to a ϑ function. Moreover, we present a pertinent example to corroborate the reported results.



2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Yuji Liu

AbstractIn this article, we present a new method for converting the boundary value problems for impulsive fractional differential systems involved with the Riemann-Liouville type derivatives to integral systems, some existence results for solutions of a class of boundary value problems for nonlinear impulsive fractional differential systems at resonance case and non-resonance case are established respectively. Our analysis relies on the well known Schauder’s fixed point theorem and coincidence degree theory. Examples are given to illustrate main results. This paper is motivated by [Solvability of multi-point boundary value problem of nonlinear impulsive fractional differential equation at resonance, Electron. J. Qual. Theory Differ. Equ. 89(2011), 1-19], [Existence result for boundary value problem of nonlinear impulsive fractional differential equation at resonance, J, Appl, Math, Comput. 39(2012) 421-443] and [Solvability for a coupled system of fractional differential equations with impulses at resonance, Bound. Value Probl. 2013, 2013: 80].



2007 ◽  
Vol 2007 ◽  
pp. 1-8 ◽  
Author(s):  
Moustafa El-Shahed

We are concerned with the existence and nonexistence of positive solutions for the nonlinear fractional boundary value problem:D0+αu(t)+λa(t) f(u(t))=0, 0<t<1, u(0)=u′(0)=u′(1)=0,where2<α<3is a real number andD0+αis the standard Riemann-Liouville fractional derivative. Our analysis relies on Krasnoselskiis fixed point theorem of cone preserving operators. An example is also given to illustrate the main results.



Sign in / Sign up

Export Citation Format

Share Document