scholarly journals Existence of nonnegative solutions for a nonlinear fractional boundary value problem

2018 ◽  
Vol 1 (1) ◽  
pp. 56-80
Author(s):  
Assia Guezane-Lakoud ◽  
Kheireddine Belakroum

AbstractThis paper deals with the existence of solutions for a class of boundary value problem (BVP) of fractional differential equation with three point conditions via Leray-Schauder nonlinear alternative. Moreover, the existence of nonnegative solutions is discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Zhigang Hu ◽  
Wenbin Liu ◽  
Jiaying Liu

By using the extension of Mawhin’s continuation theorem due to Ge, we consider boundary value problems for fractionalp-Laplacian equation. A new result on the existence of solutions for the fractional boundary value problem is obtained, which generalizes and enriches some known results to some extent from the literature.





2012 ◽  
Vol 23 (10) ◽  
pp. 1250100 ◽  
Author(s):  
ZHIGANG HU ◽  
WENBIN LIU ◽  
WENJUAN RUI

In this paper, by using the coincidence degree theory, we consider periodic boundary value problem for fractional differential equation. A new result on the existence of solutions for above fractional boundary value problem is obtained.



2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Jinhua Wang ◽  
Hongjun Xiang ◽  
Yuling Zhao

We consider boundary value problem for nonlinear fractional differential equationD0+αu(t)+f(t,u(t))=0,  0<t<1,  n-1<α≤n,  n>3,  u(0)=u'(1)=u′′(0)=⋯=u(n-1)(0)=0, whereD0+αdenotes the Caputo fractional derivative. By using fixed point theorem, we obtain some new results for the existence and multiplicity of solutions to a higher-order fractional boundary value problem. The interesting point lies in the fact that the solutions here are positive, monotone, and concave.



Sign in / Sign up

Export Citation Format

Share Document