scholarly journals Dynamical Downscaling of Climate Change Impacts on Wind Energy Resources in the Contiguous United States by Using a Limited-Area Model with Scale-Selective Data Assimilation

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Bin Liu ◽  
Katelyn B. Costa ◽  
Lian Xie ◽  
Fredrick H. M. Semazzi

By using a limited-area model (LAM) in combination with the scale-selective data assimilation (SSDA) approach, wind energy resources in the contiguous United States (CONUS) were downscaled from IPCC CCSM3 global model projections for both current and future climate conditions. An assessment of climate change impacts on wind energy resources in the CONUS region was then conducted. Based on the downscaling results, when projecting into future climate under IPCC’s A1B scenario, the average annual wind speed experiences an overall shift across the CONUS region. From the current climate to the 2040s, the average annual wind speed is expected to increase from 0.1 to 0.2 m s−1over the Great Plains, Northern Great Lakes Region, and Southwestern United States located southwest of the Rocky Mountains. When projecting into the 2090s from current climate, there is an overall increase in the Great Plains Region and Southwestern United States located southwest of the Rockies with a mean wind speed increase between 0 and 0.1 m s−1, while, the Northern Great Lakes Region experiences an even greater increase from current climate to 2090s than over the first few decades with an increase of mean wind speed from 0.1 to 0.4 m s−1.

2021 ◽  
Vol 11 (6) ◽  
pp. 2648
Author(s):  
Fahad Radhi Alharbi ◽  
Denes Csala

Climate change mitigation is one of the most critical challenges of this century. The unprecedented global effects of climate change are wide-ranging, including changing weather patterns that threaten food production, increased risk of catastrophic floods, and rising sea levels. Adapting to these impacts will be more difficult and costly in the future if radical changes are not made now. This review paper evaluates the Gulf Cooperation Council (GCC) countries’ potential for solar and wind energy resources to meet climate change mitigation requirements and assesses the ability of the GCC region to shift towards low-carbon technologies. The review demonstrates that the GCC region is characterized by abundant solar energy resources. The northwestern, southeastern, and western mountains of the region are highlighted as locations for solar energy application. Oman displays the highest onshore wind speed range, 3–6.3 m s⁻1, and has the highest annual solar radiation of up to 2500 kWh/m2. Kuwait has the second highest onshore wind speed range of 4.5–5.5 m s⁻1. The western mountains and northwestern Saudi Arabia have a wind speed range of 3–6 m s⁻1. The United Arab Emirates (UAE) has the second highest annual solar radiation, 2285 kWh/m2, while Saudi Arabia and the state of Kuwait have equal annual solar radiation at 2200 kWh/m2. This review demonstrates that abundant offshore wind energy resources were observed along the coastal areas of the Arabian Gulf, as well as a potential opportunity for wind energy resource development in the Red Sea, which was characterized by high performance. In addition, the GCC countries will not be able to control and address the interrelated issues of climate change in the future if they do not eliminate fossil fuel consumption, adhere to the Paris Agreement, and implement plans to utilize their natural resources to meet these challenges.


2017 ◽  
Vol 5 (2) ◽  
pp. 83 ◽  
Author(s):  
Boluwaji Olomiyesan ◽  
Onyedi Oyedum ◽  
Paulinus Ugwuoke ◽  
Matthew Abolarin

This study assesses the wind-energyresources in Nigeria by reviewing the existing literature on the subject matter, and also evaluates the wind potential in six locations in the northwest region of the country. Twenty-two years’ (1984 – 2005) wind speed data obtained from the Nigerian Meteorological Agencies (NIMET) were used in this study.Weibull two-parameter and other statistical models were employed in this analysis. Wind speed distribution across Nigeria shows that some locations in the northern part of the country are endowed with higher wind potential than others in the southern part of the country. Moreover, assessment of the wind-energy resources in the study locations reveals that wind energy potential in the region is lowest in Yelwa and highest in Kano; WPD varies from 28.30 Wm-2 to 483.72Wm-2 at 10 m AGL, 45.33 Wm-2 to 775.19 Wm-2 at 30 m AGL and 56.43 Wm-2 to 964.77 Wm-2 at 50 m AGL.Thus Kano, Sokoto and Katsina are suitable for large-scale wind power generation, while Gusau is suitable for small-scale wind power generation; whereas Yelwa and Kaduna may not be suitable for wind power production because of their poor wind potential.


2020 ◽  
Vol 15 (6) ◽  
pp. 111-124
Author(s):  
FARAH ELLYZA HASHIM ◽  
◽  
OSCAR PEYRE ◽  
SARAH JOHNSON LAPOK ◽  
OMAR YAAKOB ◽  
...  

Realistic view on the potential of offshore wind farm development in Malaysia is necessary and requires accurate and wide coverage of wind speed data. Long term global datasets of satellite altimetry of wind speed provide a potentially valuable resource to identify the potential of offshore wind energy in Malaysia. This paper presents three different assessments of offshore wind energy resources in Malaysia using satellite altimetry. The wind speed data obtained from Radar Altimeter Database System (RADS) were validated and identified to be in agreement with previous studies. The resources were then assessed at three different levels; theoretical, technical and practical offshore wind energy potential. The technical resource potential was assessed by taking into consideration the available offshore wind turbine technology. Conflicting uses and environmental constraints that define the practical offshore wind energy resources are plotted on the maps to present a practicality of offshore wind farm development in Malaysian sea. The study concluded that, in theoretical view, Malaysia does have potential of offshore wind energy resource especially in Borneo Water with average annual wind energy density above 500 kWh/m2. However, the development of offshore wind farm in Malaysia will be difficult taking into consideration the technical and practical challenge.


2021 ◽  
Vol 16 (4) ◽  
pp. 641-650
Author(s):  
Derradji Mederreg ◽  
Mohamed Salmi ◽  
Maouedj Rachid ◽  
Hijaz Ahmad ◽  
Giulio Lorenzini ◽  
...  

Details on the wind potential during a period of about thirteen years in Algeria is given in the present work. The inspection is performed for sixteen regions covering almost all the territory of the country. The density of the mean wind power is determined for the different regions. The maps of annual and seasonal wind energy resources are also established. The characteristics of the wind velocity, as well as the potential of wind power, are determined by the Weibull distribution. From the given results, the highest values of annual mean wind speed and the annual mean wind power density are found in Adrar (P10 = 283.12 W/m2 and P50 = 646.91 W/m2), while the lowest values are observed in Skikda (P10 = 40.61 W/m2 and P50 = 115.51 W/m2, respectively).


2020 ◽  
Vol 31 (7) ◽  
Author(s):  
Felipe Tagle ◽  
Marc G. Genton ◽  
Andrew Yip ◽  
Suleiman Mostamandi ◽  
Georgiy Stenchikov ◽  
...  

2021 ◽  
Vol 47 ◽  
pp. 101351
Author(s):  
Jianxiong Wan ◽  
Fengfeng Zheng ◽  
Haolun Luan ◽  
Yi Tian ◽  
Leixiao Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document