scholarly journals Gulf Cooperation Council Countries’ Climate Change Mitigation Challenges and Exploration of Solar and Wind Energy Resource Potential

2021 ◽  
Vol 11 (6) ◽  
pp. 2648
Author(s):  
Fahad Radhi Alharbi ◽  
Denes Csala

Climate change mitigation is one of the most critical challenges of this century. The unprecedented global effects of climate change are wide-ranging, including changing weather patterns that threaten food production, increased risk of catastrophic floods, and rising sea levels. Adapting to these impacts will be more difficult and costly in the future if radical changes are not made now. This review paper evaluates the Gulf Cooperation Council (GCC) countries’ potential for solar and wind energy resources to meet climate change mitigation requirements and assesses the ability of the GCC region to shift towards low-carbon technologies. The review demonstrates that the GCC region is characterized by abundant solar energy resources. The northwestern, southeastern, and western mountains of the region are highlighted as locations for solar energy application. Oman displays the highest onshore wind speed range, 3–6.3 m s⁻1, and has the highest annual solar radiation of up to 2500 kWh/m2. Kuwait has the second highest onshore wind speed range of 4.5–5.5 m s⁻1. The western mountains and northwestern Saudi Arabia have a wind speed range of 3–6 m s⁻1. The United Arab Emirates (UAE) has the second highest annual solar radiation, 2285 kWh/m2, while Saudi Arabia and the state of Kuwait have equal annual solar radiation at 2200 kWh/m2. This review demonstrates that abundant offshore wind energy resources were observed along the coastal areas of the Arabian Gulf, as well as a potential opportunity for wind energy resource development in the Red Sea, which was characterized by high performance. In addition, the GCC countries will not be able to control and address the interrelated issues of climate change in the future if they do not eliminate fossil fuel consumption, adhere to the Paris Agreement, and implement plans to utilize their natural resources to meet these challenges.

2020 ◽  
Vol 15 (6) ◽  
pp. 111-124
Author(s):  
FARAH ELLYZA HASHIM ◽  
◽  
OSCAR PEYRE ◽  
SARAH JOHNSON LAPOK ◽  
OMAR YAAKOB ◽  
...  

Realistic view on the potential of offshore wind farm development in Malaysia is necessary and requires accurate and wide coverage of wind speed data. Long term global datasets of satellite altimetry of wind speed provide a potentially valuable resource to identify the potential of offshore wind energy in Malaysia. This paper presents three different assessments of offshore wind energy resources in Malaysia using satellite altimetry. The wind speed data obtained from Radar Altimeter Database System (RADS) were validated and identified to be in agreement with previous studies. The resources were then assessed at three different levels; theoretical, technical and practical offshore wind energy potential. The technical resource potential was assessed by taking into consideration the available offshore wind turbine technology. Conflicting uses and environmental constraints that define the practical offshore wind energy resources are plotted on the maps to present a practicality of offshore wind farm development in Malaysian sea. The study concluded that, in theoretical view, Malaysia does have potential of offshore wind energy resource especially in Borneo Water with average annual wind energy density above 500 kWh/m2. However, the development of offshore wind farm in Malaysia will be difficult taking into consideration the technical and practical challenge.


2018 ◽  
Vol 25 (1) ◽  
pp. 120 ◽  
Author(s):  
Alexander Dunlap

Providing a glimpse into the reality of wind energy development, the story of Álvaro Obregón is one of resistance. Álvaro Obregón is a primarily Zapotec semi-subsistence community located near the entrance of the Santa Teresa sand bar (Barra), where in 2011 Mareña Renovables initiated the process of building 102 wind turbines. Demonstrating the complicated micro-politics of land acquisition, conflict and unrest, this article argues that climate change mitigation initiatives are sparking land grabs and conflict with the renewed valuation of wind resources. Insurrection against the Mareña Renovables wind project has spawned a long-term conflict, which has created social divisions and a type of low-intensity civil war within the town. This article will chronicle the uprising against the wind company, battles with police, and the town hall takeover, which includes analyzing the conflict taking place between the cabildo comunitario and the constitucionalistas. Subsequent sections examine the different perspectives within the village and how this battle between the Communitarians and the wind company continues today. The article reveals the complications associated with land deals, the conflict generating potential of climate change mitigation practices and, finally, concludes by reflecting on the difficulties of formulating alternatives to development within a conflict situation.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Bin Liu ◽  
Katelyn B. Costa ◽  
Lian Xie ◽  
Fredrick H. M. Semazzi

By using a limited-area model (LAM) in combination with the scale-selective data assimilation (SSDA) approach, wind energy resources in the contiguous United States (CONUS) were downscaled from IPCC CCSM3 global model projections for both current and future climate conditions. An assessment of climate change impacts on wind energy resources in the CONUS region was then conducted. Based on the downscaling results, when projecting into future climate under IPCC’s A1B scenario, the average annual wind speed experiences an overall shift across the CONUS region. From the current climate to the 2040s, the average annual wind speed is expected to increase from 0.1 to 0.2 m s−1over the Great Plains, Northern Great Lakes Region, and Southwestern United States located southwest of the Rocky Mountains. When projecting into the 2090s from current climate, there is an overall increase in the Great Plains Region and Southwestern United States located southwest of the Rockies with a mean wind speed increase between 0 and 0.1 m s−1, while, the Northern Great Lakes Region experiences an even greater increase from current climate to 2090s than over the first few decades with an increase of mean wind speed from 0.1 to 0.4 m s−1.


Climate ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 136
Author(s):  
Rebecca J. Barthelmie ◽  
Sara C. Pryor

Global wind resources greatly exceed current electricity demand and the levelized cost of energy from wind turbines has shown precipitous declines. Accordingly, the installed capacity of wind turbines grew at an annualized rate of about 14% during the last two decades and wind turbines now provide ~6–7% of the global electricity supply. This renewable electricity generation source is thus already playing a role in reducing greenhouse gas emissions from the energy sector. Here we document trends within the industry, examine projections of future installed capacity increases and compute the associated climate change mitigation potential at the global and regional levels. Key countries (the USA, UK and China) and regions (e.g., EU27) have developed ambitious plans to expand wind energy penetration as core aspects of their net-zero emissions strategies. The projected climate change mitigation from wind energy by 2100 ranges from 0.3–0.8 °C depending on the precise socio-economic pathway and wind energy expansion scenario followed. The rapid expansion of annual increments to wind energy installed capacity by approximately two times current rates can greatly delay the passing of the 2 °C warming threshold relative to pre-industrial levels. To achieve the required expansion of this cost-effective, low-carbon energy source, there is a need for electrification of the energy system and for expansion of manufacturing and installation capacity.


2014 ◽  
Vol 953-954 ◽  
pp. 462-466
Author(s):  
Pan Pan ◽  
Wan Long Gu ◽  
Ye Yu Zhu

With the observation data of the whole year from November 2012 to October 2013 and results of numerical simulation, we do some research on the wind energy resources of Henan Province. Variation of wind energy resources is generally better in winter and spring, poor in summer and autumn. Diurnal variation of wind resources across different, but most good wind resource areas are located at higher elevations, and wind resource is generally better at daytime than night. Wind resources of Henan province is relatively limited, which can be technology developed are located in hills area and the mountain highlands of northern, central, western and southern part. Better resources are mainly located on hilltop and ridge.


2017 ◽  
Vol 10 (2) ◽  
pp. 16-36 ◽  
Author(s):  
Alexander Dunlap

The Isthmus of Tehuantepec region of southwest Oaxaca, Mexico, known locally as the Istmo, was identified in 2003 as a prime site for wind energy development. Supported by climate change mitigation legislation, a ‘wind rush’ engulfed the Istmo. Now, La Ventosa sits surrounded by high-tension wires and wind turbines, some only 280 meters from homes. This paper argues that new valuations of wind resources based on market mechanisms and anthropogenic climate change laws are intensifying the destructive trajectory of the industrial economy. There are benefits for land owners and political authorities, and what amounts to token civil works projects for the town. But the majority of people interviewed expressed dissatisfaction towards the existence of wind parks surrounding the town. Instead of collective benefits, the wind parks brought different degrees of health concerns, enormous increases in land, rent, food, and electricity prices, as well as insecurity. The findings here demonstrate that wind energy development, encouraged by climate change mitigation policies, is intensifying pre-existing trends towards inequality and poverty in La Ventosa. Meanwhile, the destructive operations of the global industrial economy are renewed, using market-based approaches to mitigating anthropogenic climate change.


Sign in / Sign up

Export Citation Format

Share Document