scholarly journals Deblurring by Solving a TVp-Regularized Optimization Problem Using Split Bregman Method

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Su Xiao

Image deblurring is formulated as an unconstrained minimization problem, and its penalty function is the sum of the error term and TVp-regularizers with0<p<1. Although TVp-regularizer is a powerful tool that can significantly promote the sparseness of image gradients, it is neither convex nor smooth, thus making the presented optimization problem more difficult to deal with. To solve this minimization problem efficiently, such problem is first reformulated as an equivalent constrained minimization problem by introducing new variables and new constraints. Thereafter, the split Bregman method, as a solver, splits the new constrained minimization problem into subproblems. For each subproblem, the corresponding efficient method is applied to ensure the existence of closed-form solutions. In simulated experiments, the proposed algorithm and some state-of-the-art algorithms are applied to restore three types of blurred-noisy images. The restored results show that the proposed algorithm is valid for image deblurring and is found to outperform other algorithms in experiments.

Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 890
Author(s):  
Suthep Suantai ◽  
Kunrada Kankam ◽  
Prasit Cholamjiak

In this research, we study the convex minimization problem in the form of the sum of two proper, lower-semicontinuous, and convex functions. We introduce a new projected forward-backward algorithm using linesearch and inertial techniques. We then establish a weak convergence theorem under mild conditions. It is known that image processing such as inpainting problems can be modeled as the constrained minimization problem of the sum of convex functions. In this connection, we aim to apply the suggested method for solving image inpainting. We also give some comparisons to other methods in the literature. It is shown that the proposed algorithm outperforms others in terms of iterations. Finally, we give an analysis on parameters that are assumed in our hypothesis.


1997 ◽  
Vol 64 (2) ◽  
pp. 440-442 ◽  
Author(s):  
S. J. Hollister ◽  
J. E. Taylor ◽  
P. D. Washabaugh

Finite strain elastostatics is expressed for general anisotropic, piecewise linear stiffening materials, in the form of a constrained minimization problem. The corresponding boundary value problem statement is identified with the associated necessary conditions. Total strain is represented as a superposition of variationally independent constituent fields. Net stress-strain properties in the model are implicit in terms of the parameters that define the constituents. The model accommodates specification of load fields as functions of a process parameter.


2015 ◽  
Vol 23 (3) ◽  
pp. 41-54 ◽  
Author(s):  
Yair Censor

Abstract We review the superiorization methodology, which can be thought of, in some cases, as lying between feasibility-seeking and constrained minimization. It is not quite trying to solve the full edged constrained minimization problem; rather, the task is to find a feasible point which is superior (with respect to an objective function value) to one returned by a feasibility-seeking only algorithm. We distinguish between two research directions in the superiorization methodology that nourish from the same general principle: Weak superiorization and strong superiorization and clarify their nature.


Sign in / Sign up

Export Citation Format

Share Document