scholarly journals A Multifrequency Radar System for Detecting Humans and Characterizing Human Activities for Short-Range Through-Wall and Long-Range Foliage Penetration Applications

2014 ◽  
Vol 2014 ◽  
pp. 1-21 ◽  
Author(s):  
Ram M. Narayanan ◽  
Sonny Smith ◽  
Kyle A. Gallagher

A multifrequency radar system for detecting humans and classifying their activities at short and long ranges is described. The short-range radar system operates within the S-Band frequency range for through-wall applications at distances of up to 3 m. It utilizes two separate waveforms which are selected via switching: a wide-band noise waveform or a continuous single tone. The long-range radar system operating in the W-Band millimeter-wave frequency range performs at distances of up to about 100 m in free space and up to about 30 m through light foliage. It employs a composite multimodal signal consisting of two waveforms, a wide-band noise waveform and an embedded single tone, which are summed and transmitted simultaneously. Matched filtering of the received and transmitted noise signals is performed to detect targets with high-range resolution, whereas the received single tone signal is used for the Doppler analysis. Doppler measurements are used to distinguish between different human movements and gestures using the characteristic micro-Doppler signals. Our measurements establish the ability of this system to detect and range humans and distinguish between different human movements at different ranges.

2005 ◽  
pp. 397-403 ◽  
Author(s):  
Steven van de Par ◽  
Armin Kohlrausch ◽  
Jeroen Breebaart ◽  
Martin McKinney

Stochastics ◽  
1988 ◽  
Vol 23 (4) ◽  
pp. 413-437 ◽  
Author(s):  
A. E. Bashirov

2008 ◽  
Vol 130 (5) ◽  
Author(s):  
Y. J. Wu ◽  
W. Q. Zhu

Physical and engineering systems are often subjected to combined harmonic and random excitations. The random excitation is often modeled as Gaussian white noise for mathematical tractability. However, in practice, the random excitation is nonwhite. This paper investigates the stationary response probability density of strongly nonlinear oscillators under combined harmonic and wide-band noise excitations. By using generalized harmonic functions, a new stochastic averaging procedure for estimating stationary response probability density of strongly nonlinear oscillators under combined harmonic and wide-band noise excitations is developed. The damping can be linear and (or) nonlinear and the excitations can be external and (or) parametric. After stochastic averaging, the system state is represented by two-dimensional time-homogeneous diffusive Markov processes. The method of reduced Fokker–Planck–Kolmogorov equation is used to investigate the stationary response of the vibration system. A nonlinearly damped Duffing oscillator is taken as an example to show the application and validity of the method. In the case of primary external resonance, based on the stationary joint probability density of amplitude and phase difference, the stochastic jump of the Duffing oscillator and P-bifurcation as the system parameters change are examined for the first time. The agreement between the analytical results and those from Monte Carlo simulation of original system shows that the proposed procedure works quite well.


1966 ◽  
Vol 40 (5) ◽  
pp. 1203-1203
Author(s):  
Sylvia J. Steiner ◽  
Arnold M. Small
Keyword(s):  

1977 ◽  
Vol 62 (S1) ◽  
pp. S96-S96
Author(s):  
N. F. Viemeister ◽  
G. P. Widin

Sign in / Sign up

Export Citation Format

Share Document