scholarly journals Identification of Novel Inhibitors for Tobacco Mosaic Virus Infection in Solanaceae Plants

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Archana Prabahar ◽  
Subashini Swaminathan ◽  
Arul Loganathan ◽  
Ramalingam Jegadeesan

Tobacco mosaic virus (TMV) infects several crops of economic importance (e.g., tomato) and remains as one of the major concerns to the farmers. TMV enters the host cell and produces the capping enzyme RNA polymerase. The viral genome replicates further to produce multiple mRNAs which encodes several proteins, including the coat protein and an RNA-dependent RNA polymerase (RdRp), as well as the movement protein. TMV replicase domain was chosen for the virtual screening studies against small molecules derived from ligand databases such as PubChem and ChemBank. Catalytic sites of the RdRp domain were identified and subjected to docking analysis with screened ligands derived from virtual screening LigandFit. Small molecules that interact with the target molecule at the catalytic domain region amino acids, GDD, were chosen as the best inhibitors for controlling the TMV replicase activity.

2000 ◽  
Vol 74 (24) ◽  
pp. 11671-11680 ◽  
Author(s):  
T. A. M. Osman ◽  
C. L. Hemenway ◽  
K. W. Buck

ABSTRACT A template-dependent RNA polymerase has been used to determine the sequence elements in the 3′ untranslated region of tobacco mosaic virus RNA that are required for promotion of minus-strand RNA synthesis and binding to the RNA polymerase in vitro. Regions which were important for minus-strand synthesis were domain D1, which is equivalent to a tRNA acceptor arm; domain D2, which is similar to a tRNA anticodon arm; an upstream domain, D3; and a central core, C, which connects domains D1, D2, and D3 and determines their relative orientations. Mutational analysis of the 3′-terminal 4 nucleotides of domain D1 indicated the importance of the 3′-terminal CA sequence for minus-strand synthesis, with the sequence CCCA or GGCA giving the highest transcriptional efficiency. Several double-helical regions, but not their sequences, which are essential for forming pseudoknot and/or stem-loop structures in domains D1, D2, and D3 and the central core, C, were shown to be required for high template efficiency. Also important were a bulge sequence in the D2 stem-loop and, to a lesser extent, a loop sequence in a hairpin structure in domain D1. The sequence of the 3′ untranslated region upstream of domain D3 was not required for minus-strand synthesis. Template-RNA polymerase binding competition experiments showed that the highest-affinity RNA polymerase binding element region lay within a region comprising domain D2 and the central core, C, but domains D1 and D3 also bound to the RNA polymerase with lower affinity.


2002 ◽  
Vol 129 (3) ◽  
pp. 1032-1044 ◽  
Author(s):  
Andrzej Talarczyk ◽  
Magdalena Krzymowska ◽  
Wojciech Borucki ◽  
Jacek Hennig

Sign in / Sign up

Export Citation Format

Share Document