scholarly journals Thymoquinone-Loaded Nanostructured Lipid Carrier Exhibited Cytotoxicity towards Breast Cancer Cell Lines (MDA-MB-231 and MCF-7) and Cervical Cancer Cell Lines (HeLa and SiHa)

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Wei Keat Ng ◽  
Latifah Saiful Yazan ◽  
Li Hua Yap ◽  
Wan Abd Ghani Wan Nor Hafiza ◽  
Chee Wun How ◽  
...  

Thymoquinone (TQ) has been shown to exhibit antitumor properties. Thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) was developed to improve the bioavailability and cytotoxicity of TQ. This study was conducted to determine the cytotoxic effects of TQ-NLC on breast cancer (MDA-MB-231 and MCF-7) and cervical cancer cell lines (HeLa and SiHa). TQ-NLC was prepared by applying the hot high pressure homogenization technique. The mean particle size of TQ-NLC was 35.66 ± 0.1235 nm with a narrow polydispersity index (PDI) lower than 0.25. The zeta potential of TQ-NLC was greater than −30 mV. Polysorbate 80 helps to increase the stability of TQ-NLC. Differential scanning calorimetry showed that TQ-NLC has a melting point of 56.73°C, which is lower than that of the bulk material. The encapsulation efficiency of TQ in TQ-NLC was 97.63 ± 0.1798% as determined by HPLC analysis. TQ-NLC exhibited antiproliferative activity towards all the cell lines in a dose-dependent manner which was most cytotoxic towards MDA-MB-231 cells. Cell shrinkage was noted following treatment of MDA-MB-231 cells with TQ-NLC with an increase of apoptotic cell population (P<0.05). TQ-NLC also induced cell cycle arrest. TQ-NLC was most cytotoxic towards MDA-MB-231 cells. It induced apoptosis and cell cycle arrest in the cells.

2019 ◽  
Vol 19 (15) ◽  
pp. 1874-1886
Author(s):  
Maria Schröder ◽  
Shazie Yusein-Myashkova ◽  
Maria Petrova ◽  
Georgi Dobrikov ◽  
Mariana Kamenova-Nacheva ◽  
...  

Background: Drug resistance is a major cause of cancer treatment failure. Most cancer therapies involve multiple agents, to overcome it. Compounds that exhibit strong anti-tumor effect without damaging normal cells are more and more in the focus of research. Chemotherapeutic drugs, combining different moieties and functional groups in one molecule, can modulate different regulatory pathways in the cell and thus reach the higher efficacy than the agents, which affect only one cellular process. Methods: We tested the effect of recently synthesized ferrocene-containing camphor sulfonamide DK-164 on two breast cancer and one breast non-cancer cell lines. The cytotoxic effects were evaluated using the standard MTT-dye reduction and clonogenic assays. The apoptotic or autophagic effects were evaluated by Annexin v binding or LC3 puncta formation assays respectively. Cell cycle arrest was determined using flow cytometry. Western blot and immunofluorescent analyses were used to estimate the localization and cellular distribution of key regulatory factors NFκB and p53. Results: Compound DK-164 has well pronounced cytotoxicity greater to cancer cells (MDA-MB-231 and MCF-7) compared to non-cancerous (MCF-10A). IC50 of the substance caused a cell cycle arrest in G1 phase and induced apoptosis up to 24 hours in both tumor cells, although being more pronounced in MCF-7, a functional p53 cell line. Treatment with IC50 concentration of the compound provoked autophagy in both tumor lines but is better pronounced in the more aggressive cancer line (MDA-MB-231). Conclusion: The tested compound DK-164 showed promising properties as a potential therapeutic agent.


2016 ◽  
Vol 4 (2) ◽  
pp. 33-41
Author(s):  
Eun-Yeol Yang ◽  
Min-Young Park ◽  
Soo-Min Jung ◽  
Sang-Eun Nam ◽  
Jin-Ok Kwon ◽  
...  

2020 ◽  
Vol 68 ◽  
pp. 104927
Author(s):  
Simone da Silva Lamartine-Hanemann ◽  
Guilherme Álvaro Ferreira-Silva ◽  
Renato de Oliveira Horvath ◽  
Roseli Soncini ◽  
Ester Siqueira Caixeta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document