scholarly journals A Note on Radiative Heat Transfer to Peristaltic Flow of Sisko Fluid

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Obaid Ullah Mehmood ◽  
Constantin Fetecau

This paper looks at the effects of radiative heat transfer on the peristaltic transport of a Sisko fluid in an asymmetric channel with nonuniform wall temperatures. Adopting the lubrication theory, highly nonlinear coupled governing equations involving power law index as an exponent have been linearized and perturbation solutions are obtained about the Sisko fluid parameter. Analytical solutions for the stream function, axial pressure gradient, axial velocity, skin friction, and Nusselt number are derived for three different cases (i.e., shear thinning fluid, viscous fluid, and shear thickening fluid). The effects of Grashof number, radiation parameter, and other configuration parameters on pumping, trapping, temperature, Nusselt number, and skin friction have been examined in detail. A good agreement has been found for the case of viscous fluid with existing results.

2013 ◽  
Vol 18 (4) ◽  
pp. 1201-1220
Author(s):  
G.S. Seth ◽  
G.K. Mahato ◽  
S. Sarkar

Abstract An investigation on an unsteady MHD natural convection flow with radiative heat transfer of a viscous, incompressible, electrically conducting and optically thick fluid past an impulsively moving vertical plate with ramped temperature in a porous medium in the presence of a Hall current and thermal diffusion is carried out. An exact solution of momentum and energy equations, under Boussinesq and Rosseland approximations, is obtained in a closed form by the Laplace transform technique for both ramped temperature and isothermal plates. Expressions for the skin friction and Nusselt number for both ramped temperature and isothermal plates are also derived. The numerical values of fluid velocity and fluid temperature are displayed graphically versus the boundary layer coordinate y for various values of pertinent flow parameters for both ramped temperature and isothermal plates. The numerical values of the skin friction due to primary and secondary flows are presented in tabular form for various values of pertinent flow parameters.


2013 ◽  
Vol 135 (12) ◽  
Author(s):  
Sharidan Shafie ◽  
Obaid Ullah Mehmood ◽  
Norzieha Mustapha

This investigation deals with thermal diffusion and diffusion thermo effects on the peristaltic flow of a Sisko fluid in an asymmetric channel. The mode of dissipative heat transfer is taken into account with nonuniform wall temperatures. Long wavelength approximation is utilized. Solutions for the highly nonlinear coupled governing equations involving power law index as an exponent are derived by employing the perturbation technique in a Sisko fluid parameter. Closed form solutions for the stream function, the axial pressure gradient, the skin friction, the temperature, the concentration, and the Nusselt number are presented. Effects of various interesting parameters are graphically interpreted. A comparative study between Newtonian, shear thinning, and shear thickening fluids is also presented. Comparison with published results for the case of viscous fluid is observed in good agreement.


Author(s):  
M.Y. Malik ◽  
Arif Hussain ◽  
T. Salahuddin ◽  
M. Awais

Purpose – The purpose of this paper is to examine the Sisko fluid model over a stretching cylinder with heat transfer and magnetohydrodynamics. Design/methodology/approach – The boundary layer approach is employed to simplify the governing equations. Suitable similarity transformations are used to transform the governing partial differential equations into ordinary differential equations. In order to solve this system of ordinary differential equations numerically, shooting method in conjunction with Runge-Kutta-Fehlberg method is used. Findings – The effects of physical parameters involved in velocity and temperature profiles are shown through graphs. It is observed that Sisko fluid parameter and curvature parameter enhances fluid velocity while motion of fluid is retarded by increasing magnetic field strength. Additionally temperature of fluid raise with curvature parameter while it fall down for larger values of Prandtl number. Skin friction coefficient and Nusselt number are computed and presented in graphs and tables for further analysis. It can be seen that curvature parameter increases both skin friction and Nusselt number while magnetic field and Prandtl number decayed skin friction and Nusselt number, respectively. Also Sisko parameter enlarges skin friction coefficient. The accuracy of solution is verified by comparing it with existing literature. Originality/value – The computed results are interested for industrial and engineering processes, especially in cooling of nuclear reactors.


Sign in / Sign up

Export Citation Format

Share Document