dissipative heat
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 20)

H-INDEX

9
(FIVE YEARS 2)

Author(s):  
Swati Mohanty ◽  
Banani Mohanty ◽  
Satyaranjan Mishra

The proposed mathematical model is based upon the peristaltic flow of an electrical conducting nanofluid within an asymmetric microchannel. The flow takes place under the action of dissipative heat energy due to the occurrence of the magnetic field that is basically known as Joule heating and radiative heat proposed as thermal radiation along with the additional heat source. Moreover, the impact of upper/lower wall zeta potential and the expression for the electric potential is presented using the Poisson Boltzmann equation and Debey length approximation. The well-known numerical practice is used for distorted governing equations with appropriate boundary conditions. Further, computation of the pressure gradient is obtained for the associated physical parameters. The graphical illustration shows the characteristics of the pertinent parameters on the flow problem and the tabular result represents the simulated values for the rate coefficients. In the significant examination, the study reveals that the mobility parameter due to the occurrence of the electric field vis-à-vis time parameter encourages the velocity distribution within the center of the channel furthermore significant retardation occurs near the wall region.


Heat Transfer ◽  
2021 ◽  
Author(s):  
Pradyumna Kumar Pattnaik ◽  
Satyaranjan Mishra ◽  
Swarnalata Jena

Author(s):  
M. A. Mohammed ◽  
J. F. Baiyeri ◽  
T. O. Ogunbayo ◽  
O. A. Esan

The investigation of dissipative heat and species diffusion of a conducting liquid under the combined influence of buoyancy forces in a moving plate is examined in the existence of magnetic field. The flowing liquid heat conductivity and viscosity are taken to be linearly varied as a temperature function. The governing derivative equations of the problem are changed to anon-linear coupled ordinary derivative equations by applying similarity quantities. The dimensionless model is solved using shooting technique along with the Runge-Kutta method. The outcomes for the flow wall friction, heat gradient and species wall gradient are offered in table and qualitatively explained. The study revealed that the Newtonian fluid viscosity can be enhanced by increasing the fluid flow medium porosity and the magnetic field strength. Hence, the study will improve the industrial usage of Newtonian working fluid.


Author(s):  
Hao Liu ◽  
Pengchao Kang ◽  
Gaohui Wu ◽  
Zhijun Wang ◽  
Ningbo zhang ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1812
Author(s):  
Qin Gang ◽  
Rong-Tsu Wang ◽  
Jung-Chang Wang

A thermoelectric pipe (TEP) is constructed by tubular graphite electrodes, Teflon material, and stainless-steel tube containing polymeric nanofluids as electrolytes in this study. Heat dissipation and power generation (generating capacity) are both fulfilled with temperature difference via the thermal-electrochemistry and redox reaction effects of polymeric nanofluids. The notion of TEP is to recover the dissipative heat from the heat capacity generated by the relevant machine systems. The thermal conductivity and power density empirical formulas of the novel TEP were derived through the intelligent dimensional analysis with thermoelectric experiments and evaluated at temperatures between 25 and 100 °C and vacuum pressures between 400 and 760 torr. The results revealed that the polymeric nanofluids composed of titanium dioxide (TiO2) nanoparticles with 0.2 wt.% sodium hydroxide (NaOH) of the novel TEP have the best thermoelectric performance among these electrolytes, including TiO2 nanofluid, TiO2 nanofluid with 0.2 wt.% NaOH, deionized water, and seawater. Furthermore, the thermal conductivity and power density of the novel TEP are 203.1 W/(m·K) and 21.16 W/m3, respectively.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3021
Author(s):  
Nicolas Candau ◽  
Oguzhan Oguz ◽  
Edith Peuvrel-Disdier ◽  
Jean-Luc Bouvard ◽  
María Lluïsa Maspoch ◽  
...  

The effect of the strain rate on damage in carbon black filled Ethylene Propylene Diene Monomer rubber (EPDM)stretched during single and multiple uniaxial loading is investigated. This has been performed by analyzing the stress–strain response, the evolution of damage by Digital Image Correlation (DIC), the associated dissipative heat source by InfraRed thermography (IR), and the chains network damage by swelling. The strain rates were selected to cover the transition from quasi-static to medium strain rate conditions. In single loading conditions, the increase of the strain rate yields in a preferential damage of the filler network while the rubber network is preserved. Such damage is accompanied by a stress softening and an adiabatic heat source rise. Conversely, increasing the strain rate in cyclic loading conditions yields in a filler network accommodation and a high self-heating whose combined effect is proposed as a possible cause of the ability of filled EPDM to limit damage by reducing cavities opening during loading, and favoring cavities closing upon unloading.


Sign in / Sign up

Export Citation Format

Share Document