scholarly journals Distortion Performance of Underwater Acoustic Sensor Networks

2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Andrej Stefanov

The paper studies the distortion performance of multihop underwater acoustic sensor networks. The network is composed of bottom mounted sensor nodes and the sensor to sensor links experience Rician fading. The distortion is evaluated for the case when there is interference from other sensors in the network. The focus is on the sustainable number of hops in the network for a maximum allowed (target) route distortion requirement. Numerical examples are provided that illustrate the results of the analysis and the regions where the network operation is limited, namely, the coverage-limited region and the interference-limited region. The paper also considers the impact of retransmissions on the distortion performance. It is found that the network connectivity and robustness improve with automatic repeat request (ARQ). The improvements are manifested as a reduction of the regions of limited performance, that is, an increase of the region where the network exhibits full connectivity. The analysis results are illustrated through numerical examples.

Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2885 ◽  
Author(s):  
Sunhyo Kim ◽  
Jee Woong Choi

Underwater acoustic sensor networks have recently attracted considerable attention as demands on the Internet of Underwater Things (IoUT) increase. In terms of efficiency, it is important to achieve the maximum communication coverage using a limited number of sensor nodes while maintaining communication connectivity. In 2017, Kim and Choi proposed a new deployment algorithm using the communication performance surface, which is a geospatial information map representing the underwater acoustic communication performance of a targeted underwater area. In that work, each sensor node was a vertically separated hydrophone array, which measures acoustic pressure (a scalar quantity). Although an array receiver is an effective system to eliminate inter-symbol interference caused by multipath channel impulse responses in underwater communication environments, a large-scale receiver system degrades the spatial efficiency. In this paper, single-vector sensors measuring the particle velocity are used as underwater sensor nodes. A single-vector sensor can be considered to be a single-input multiple-output communication system because it measures the three directional components of particle velocity. Our simulation results show that the optimal deployment obtained using single-vector sensor nodes is more effective than that obtained using a hydrophone (three-channel vertical-pressure sensor) array.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Zhigang Jin ◽  
Shenyang Xiao ◽  
Yishan Su ◽  
Yajing Li

The impact of the acoustic modem with long preamble characteristic on the collision feature of the media access control scheme in underwater acoustic sensor networks (UANs) is evaluated. It is observed that the collision probability is relatively high due to the extremely long duration of preamble. As a result, UANs generally have much lower network throughput. To address this problem, a prescheduling MAC protocol named PC-MAC for UANs is proposed, which leverages a novel prescheduling scheme for the exchange of control packet to alleviate the collision probability among control packets. PC-MAC is a reservation-based channel access scheme. In the proposed protocol, an extra guard time is introduced to avoid the influence of dynamic spatial-temporal uncertainty of the sender and receiver positions. Simulation results show that PC-MAC outperforms classic reservation-based MAC protocol named SFAMA in terms of network goodput and end-to-end delay and lowers collision probability among control packets in two representative network scenarios.


Sign in / Sign up

Export Citation Format

Share Document