A neutral-point potential control method for three-level inverters by injecting zero-sequence voltage

Author(s):  
Zhou Jinghua ◽  
Liu Huichen ◽  
Zhang Xiaowei ◽  
Li Zhengxi
2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Yingjie Wang ◽  
Haiyuan Liu ◽  
Wenchao Wang ◽  
Kangan Wang

The neutral-point (NP) potential balance control in three-level neutral-point-clamped (NPC) back-to-back converter is a research nodus. Its current strategies are the same as the strategies of a single three-level NPC converter. But the strategies do not give full play to its advantages that the neutral-point current can only flow through the connected midlines in both sides of the converter but does not flow through the DC-bus capacitors. In this paper, firstly the NP potential model based on the NP current injected is proposed. It overcomes numerous variable constraints and mutual coupling in the conventional model based on the zero-sequence voltage injected. And then on this basis, three NP-potential balance control algorithms, unilateral control, bilateral independent control, and bilateral coordinated control, are proposed according to difference requirements. All of these algorithms use the midlines rather than the DC-bus capacitors to flow the NP current as much as possible. Their control abilities are further quantitatively analyzed and compared. Finally, simulation results verify the validity and effectiveness of these algorithms.


Author(s):  
Guangjie Fu ◽  
Xinpeng Li

<p>Diode-clamped three-level inverters have been widely used in high voltage and high power fields because of their unique advantages. Nowadays, diode-clamped three-level inverters have become a research hotspot. In order to reduce the content of energy harmonics injected into the power grid by the inverter system, the neutral point potential needs to be controlled. This paper proposes a control method based on a proportional controller. The voltage sector was redefined and the design of the proportional controller was completed. In combination with the introduction of a new PWM technology, a smooth control of the midpoint potential was achieved. The effectiveness of the method is verified by simulation in MATLAB<em></em></p>


2022 ◽  
Vol 9 ◽  
Author(s):  
Zhongrui Li ◽  
Ziling Nie ◽  
Jie Xu ◽  
Huayu Li ◽  
Sheng Ai

Flywheel energy storage system is a popular energy storage technology, in which inverters are the center of electrical energy conversion, directly affecting the power capacity. Parallel operation of three-level inverters is an effective approach to achieve larger motor drive power and the interleaved operation can improve the harmonic characteristics. However, harmonic analysis models of the interleaved parallel three-level inverters are rare in the literature and how the neutral-point potential imbalance affects the harmonics characteristics has not been discussed. This article establishes the harmonic calculation for balanced and unbalanced neutral-point potential through the five-level voltage capability of the interleaved parallel three-level inverters. Moreover, a neutral-point potential control method based on zero-sequence voltage injection is proposed. The implement process of the method is proposed, and how the operating frequency affect the ability of the neutral-point potential balance is studied. Finally, the simulation and experiment results verify the feasibility and practicability of the established harmonic analysis models and the neutral-point potential control method.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 3041
Author(s):  
Guozheng Zhang ◽  
Yingjie Su ◽  
Zhanqing Zhou ◽  
Qiang Geng

For the conventional carrier-based pulse width modulation (CBPWM) strategies of neutral point clamped (NPC) three-level inverters, the higher common-mode voltage (CMV) is a major drawback. However, with CMV suppression strategies, the switching loss is relatively high. In order to solve the above issue, a carrier-based discontinuous PWM (DPWM) strategy for NPC three-level inverter is proposed in this paper. Firstly, the reference voltage is modified by the twice injection of zero-sequence voltage. Switching states of the three-phase are clamped alternatively to reduce both the CMV and the switching loss. Secondly, the carriers are also modified by the phase opposite disposition of the upper and lower carriers. The extra switching at the border of two adjacent regions in the space vector diagram is reduced. Meanwhile, a neutral-point voltage (NPV) control method is also presented. The duty cycle of the switching state that affects the NPV is adjusted to obtain the balance control of the NPV. Still, the switching sequence in each carrier period remains the same. Finally, the feasibility and effectiveness of the proposed DPWM strategy are tested on a rapid control prototype platform based on RT-Lab.


Sign in / Sign up

Export Citation Format

Share Document