scholarly journals On the Existence and Uniqueness of the Solution of Linear Fractional Differential-Algebraic System

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Zaiyong Feng ◽  
Ning Chen

The existence and uniqueness of the solution of a new kind of system—linear fractional differential-algebraic equations (LFDAE)—are investigated. Fractional derivatives involved are under the Caputo definition. By using the tool of matrix pair, the LFDAE in which coefficients matrices are both square matrices have unique solution under the condition that coefficients matrices make up a regular matrix pair. With the help of equivalent transformation and Kronecker canonical form of the coefficients matrices, the sufficient condition for existence and uniqueness of the solution of the LFDAE in which coefficients matrices are both not square matrices is proposed later. Two examples are given to justify the obtained theorems in the end.

2016 ◽  
Vol 5 (3) ◽  
pp. 152
Author(s):  
Sameer Hasan ◽  
Eman Namah

This work provided the evolution of the algorithm for analytic solution of system of fractional differential-algebraic equations (FDAEs).The algorithm referred to good effective method for combination the Laplace Iteration method with general Lagrange multiplier (LLIM). Through this method we have reached excellent results in comparison with exact solution as we illustrated in our examples.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yujing Liu ◽  
Chenguang Yan ◽  
Weihua Jiang

In this paper, we consider the differential equations with right-sided Caputo and left-sided Riemann-Liouville fractional derivatives. Furthermore, the expression of Green’s function is derived, and its properties are investigated. By the fixed-point theorem for both φ − h , e -concave operators and mixed monotone operators, we get the existence and uniqueness of the solution, respectively. As applications, some examples are provided to illustrate our main results.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Idris Ahmed ◽  
Poom Kumam ◽  
Jamilu Abubakar ◽  
Piyachat Borisut ◽  
Kanokwan Sitthithakerngkiet

Abstract This study investigates the solutions of an impulsive fractional differential equation incorporated with a pantograph. This work extends and improves some results of the impulsive fractional differential equation. A differential equation of an impulsive fractional pantograph with a more general anti-periodic boundary condition is proposed. By employing the well-known fixed point theorems of Banach and Krasnoselskii, the existence and uniqueness of the solution of the proposed problem are established. Furthermore, two examples are presented to support our theoretical analysis.


2019 ◽  
Vol 8 (1) ◽  
pp. 702-718
Author(s):  
Mahmoud Mashali-Firouzi ◽  
Mohammad Maleki

Abstract The nonlocal nature of the fractional derivative makes the numerical treatment of fractional differential equations expensive in terms of computational accuracy in large domains. This paper presents a new multiple-step adaptive pseudospectral method for solving nonlinear multi-order fractional initial value problems (FIVPs), based on piecewise Legendre–Gauss interpolation. The fractional derivatives are described in the Caputo sense. We derive an adaptive pseudospectral scheme for approximating the fractional derivatives at the shifted Legendre–Gauss collocation points. By choosing a step-size, the original FIVP is replaced with a sequence of FIVPs in subintervals. Then the obtained FIVPs are consecutively reduced to systems of algebraic equations using collocation. Some error estimates are investigated. It is shown that in the present multiple-step pseudospectral method the accuracy of the solution can be improved either by decreasing the step-size or by increasing the number of collocation points within subintervals. The main advantage of the present method is its superior accuracy and suitability for large-domain calculations. Numerical examples are given to demonstrate the validity and high accuracy of the proposed technique.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Azizollah Babakhani ◽  
Dumitru Baleanu ◽  
Ravi P. Agarwal

We prove the existence and uniqueness of solutions for two classes of infinite delay nonlinear fractional order differential equations involving Riemann-Liouville fractional derivatives. The analysis is based on the alternative of the Leray-Schauder fixed-point theorem, the Banach fixed-point theorem, and the Arzela-Ascoli theorem inΩ={y:(−∞,b]→ℝ:y|(−∞,0]∈ℬ}such thaty|[0,b]is continuous andℬis a phase space.


Author(s):  
M Sahadet Hossain ◽  
M Mostafizur Rahman

Differential-algebraic equations (DAEs) arise in a variety of applications. Their analysis and numerical treatment, therefore, plays an important role in modern mathematics. The paper gives an introduction to the topics of DAEs. Examples of DAEs are considered showing their importance for practical problems. Some essential concepts that are really essential for understanding the DAE systems are introduced. The canonical forms of DAEs are discussed widely to make them more efficient and easy for practical use. Also some numerical examples are discussed to clarify the existence and uniqueness of the system's solutions. Keywords: differential-algebraic equations, index concept, canonical forms. DOI: 10.3329/diujst.v4i2.4365 Daffodil International University Journal of Science and Technology Vol.4(2) 2009 pp.28-35


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
N. I. Mahmudov ◽  
S. Unul

Existence and uniqueness of solutions forα∈(2,3]order fractional differential equations with three-point fractional boundary and integral conditions involving the nonlinearity depending on the fractional derivatives of the unknown function are discussed. The results are obtained by using fixed point theorems. Two examples are given to illustrate the results.


Sign in / Sign up

Export Citation Format

Share Document