scholarly journals New efficiency algorithm for solving fractional order differential-algebraic system

2016 ◽  
Vol 5 (3) ◽  
pp. 152
Author(s):  
Sameer Hasan ◽  
Eman Namah

This work provided the evolution of the algorithm for analytic solution of system of fractional differential-algebraic equations (FDAEs).The algorithm referred to good effective method for combination the Laplace Iteration method with general Lagrange multiplier (LLIM). Through this method we have reached excellent results in comparison with exact solution as we illustrated in our examples.

Author(s):  
Sameer Hasan ◽  
Eman Namah

In this article, we propose an efficient algorithm for solving system of time- fractional differential-algebraic equations by using a fractional Laplace iteration method. The scheme is tested for some examples and the results demonstrate reliability and accuracy of this method.


Author(s):  
Sambit Das ◽  
Anindya Chatterjee

Fractional order integrodifferential equations cannot be directly solved like ordinary differential equations. Numerical methods for such equations have additional algorithmic complexities. We present a particularly simple recipe for solving such equations using a Galerkin scheme developed in prior work. In particular, matrices needed for that method have here been precisely evaluated in closed form using special functions, and a small Matlab program is provided for the same. For equations where the highest order of the derivative is fractional, differential algebraic equations arise; however, it is demonstrated that there is a simple regularization scheme that works for these systems, such that accurate solutions can be easily obtained using standard solvers for stiff differential equations. Finally, the role of nonzero initial conditions is discussed in the context of the present approximation method.


In the article we obtained sufficient conditions of the existence of the nonlinear Noetherian boundary value problem solution for the system of differential-algebraic equations which are widely used in mechanics, economics, electrical engineering, and control theory. We studied the case of the nondegenerate system of differential algebraic equations, namely: the differential algebraic system that is solvable relatively to the derivative. In this case, the nonlinear system of differential algebraic equations is reduced to the system of ordinary differential equations with an arbitrary continuous function. The studied nonlinear differential-algebraic boundary-value problem in the article generalizes the numerous statements of the non-linear non-Gath boundary value problems considered in the monographs of А.М. Samoilenko, E.A. Grebenikov, Yu.A. Ryabov, A.A. Boichuk and S.M. Chuiko, and the obtained results can be carried over matrix boundary value problems for differential-algebraic systems. The obtained results in the article of the study of differential-algebraic boundary value problems, in contrast to the works of S. Kempbell, V.F. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko and A.A. Boychuk, do not involve the use of the central canonical form, as well as perfect pairs and triples of matrices. To construct solutions of the considered boundary value problem, we proposed the iterative scheme using the method of simple iterations. The proposed solvability conditions and the scheme for finding solutions of the nonlinear Noetherian differential-algebraic boundary value problem, were illustrated with an example. To assess the accuracy of the found approximations to the solution of the nonlinear differential-algebraic boundary value problem, we found the residuals of the obtained approximations in the original equation. We also note that obtained approximations to the solution of the nonlinear differential-algebraic boundary value problem exactly satisfy the boundary condition.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1926
Author(s):  
Fateme Ghomanjani ◽  
Samad Noeiaghdam

The aim of this paper is to apply the Said Ball curve (SBC) to find the approximate solution of fractional differential-algebraic equations (FDAEs). This method can be applied to solve various types of fractional order differential equations. Convergence theorem of the method is proved. Some examples are presented to show the efficiency and accuracy of the method. Based on the obtained results, the SBC is more accurate than the Bezier curve method.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Zaiyong Feng ◽  
Ning Chen

The existence and uniqueness of the solution of a new kind of system—linear fractional differential-algebraic equations (LFDAE)—are investigated. Fractional derivatives involved are under the Caputo definition. By using the tool of matrix pair, the LFDAE in which coefficients matrices are both square matrices have unique solution under the condition that coefficients matrices make up a regular matrix pair. With the help of equivalent transformation and Kronecker canonical form of the coefficients matrices, the sufficient condition for existence and uniqueness of the solution of the LFDAE in which coefficients matrices are both not square matrices is proposed later. Two examples are given to justify the obtained theorems in the end.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Atimad Harir ◽  
Said Malliani ◽  
Lalla Saadia Chandli

In this paper, the conformable fractional-order SIR epidemic model are solved by means of an analytic technique for nonlinear problems, namely, the conformable fractional differential transformation method (CFDTM) and variational iteration method (VIM). These models are nonlinear system of conformable fractional differential equation (CFDE) that has no analytic solution. The VIM is based on conformable fractional derivative and proved. The result revealed that both methods are in agreement and are accurate and efficient for solving systems of OFDE.


Author(s):  
Hajrudin Pasic

Abstract Presented is an algorithm suitable for numerical solutions of multibody mechanics problems. When s-stage fully implicit Runge-Kutta (RK) method is used to solve these problems described by a system of n ordinary differential equations (ODE), solution of the resulting algebraic system requires 2s3 n3 / 3 operations. In this paper we present an efficient algorithm, whose formulation differs from the traditional RK method. The procedure for uncoupling the algebraic system into a block-diagonal matrix with s blocks of size n is derived for any s. In terms of number of multiplications, the algorithm is about s2 / 2 times faster than the original, nondiagonalized system, as well as s2 times in terms of number of additions/multiplications. With s = 3 the method has the same precision and stability property as the well-known RADAU5 algorithm. However, our method is applicable with any s and not only to the explicit ODEs My′ = f(x, y), where M = constant matrix, but also to the general implicit ODEs of the form f (x, y, y′) = 0. In the solution procedure y is assumed to have a form of the algebraic polynomial whose coefficients are found by using the collocation technique. A proper choice of locations of collocation points guarantees good precision/stability properties. If constructed such as to be L-stable, the method may be used for solving differential-algebraic equations (DAEs). The application is illustrated by a constrained planar manipulator problem.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1755
Author(s):  
M. S. Al-Sharif ◽  
A. I. Ahmed ◽  
M. S. Salim

Fractional differential equations have been applied to model physical and engineering processes in many fields of science and engineering. This paper adopts the fractional-order Chelyshkov functions (FCHFs) for solving the fractional differential equations. The operational matrices of fractional integral and product for FCHFs are derived. These matrices, together with the spectral collocation method, are used to reduce the fractional differential equation into a system of algebraic equations. The error estimation of the presented method is also studied. Furthermore, numerical examples and comparison with existing results are given to demonstrate the accuracy and applicability of the presented method.


2020 ◽  
Vol 15 (10) ◽  
Author(s):  
Edward J. Haug

Abstract Four formulations of nonholonomic mechanical system dynamics, with both holonomic and differential constraints, are presented and shown to be well posed; i.e., solutions exist, are unique, and depend continuously on problem data. They are (1) the d'Alembert variational formulation, (2) a broadly applicable manifold theoretic extension of Maggi's equations that is a system of first-order ordinary differential equations (ODE), (3) Lagrange multiplier-based index 3 differential-algebraic equations (index 3 DAE), and (4) Lagrange multiplier-based index 0 differential-algebraic equations (index 0 DAE). The ODE formulation is shown to be well posed, as a direct consequence of the theory of ODE. The variational formulation is shown to be equivalent to the ODE formulation, hence also well posed. Finally, the index 3 DAE and index 0 DAE formulations are shown to be equivalent to the variational and ODE formulations, hence also well posed. These results fill a void in the literature and provide a theoretical foundation for nonholonomic mechanical system dynamics that is comparable to the theory of ODE.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
H. Jafari ◽  
Abdelouahab Kadem ◽  
D. Baleanu

This paper presents approximate analytical solutions for the fractional-order Brusselator system using the variational iteration method. The fractional derivatives are described in the Caputo sense. This method is based on the incorporation of the correction functional for the equation. Two examples are solved as illustrations, using symbolic computation. The numerical results show that the introduced approach is a promising tool for solving system of linear and nonlinear fractional differential equations.


Sign in / Sign up

Export Citation Format

Share Document