scholarly journals Effects of Osseointegration by Bone Morphogenetic Protein-2 on Titanium Implants In Vitro and In Vivo

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Fu-Yuan Teng ◽  
Wen-Cheng Chen ◽  
Yin-Lai Wang ◽  
Chun-Cheng Hung ◽  
Chun-Chieh Tseng

This study designed a biomimetic implant for reducing healing time and achieving early osseointegration to create an active surface. Bone morphogenetic protein-2 (BMP-2) is a strong regulator protein in osteogenic pathways. Due to hardly maintaining BMP-2 biological function and specificity, BMP-2 efficient delivery on implant surfaces is the main challenge for the clinic application. In this study, a novel method for synthesizing functionalized silane film for superior modification with BMP-2 on titanium surfaces is proposed. Three groups were compared with and without BMP-2 on modified titanium surfaces in vitro and in vivo: mechanical grinding; electrochemical modification through potentiostatic anodization (ECH); and sandblasting, alkali heating, and etching (SMART). Cell tests indicated that the ECH and SMART groups with BMP-2 markedly promoted D1 cell activity and differentiation compared with the groups without BMP-2. Moreover, the SMART group with a BMP-2 surface markedly promoted early alkaline phosphatase expression in the D1 cells compared with the other surface groups. Compared with these groups in vivo, SMART silaning with BMP-2 showed superior bone quality and created contact areas between implant and surrounding bones. The SMART group with BMP-2 could promote cell mineralization in vitro and osseointegration in vivo, indicating potential clinical use.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Ying Li ◽  
Yunjia Song ◽  
Aobo Ma ◽  
Changyi Li

Although titanium (Ti) alloys have been widely used as implant materials, the bioinertness of pristine Ti impairs their bioactivity and early osseointegration. In the present work, we prepared TiO2 nanotubes (TNT) layer on the titanium (Ti) surface by anodic oxidation. The anodized surface was functionalized with human bone morphogenetic protein-2 coating to form the hBMP-2/TNT surface. The release behavior of hBMP-2 on the hBMP-2/TNT surface displayed a controlled and sustained pattern, compared to that on the hBMP-2/Ti surface, which showed a rapid release. In vitro cellular activity tests demonstrated that both TNT and hBMP-2/Ti surfaces, particularly the hBMP-2/TNT surface, enhanced adhesion, proliferation, and differentiation of osteoblast cells. Increased cell adhesion, improved cytoskeleton organization, and immunofluorescence staining of vinculin were observed on the modified surfaces. The TNT, hBMP-2/Ti, and hBMP-2/TNT surfaces, especially the hBMP-2/TNT surface, further displayed an upregulated gene expression of adhesion and osteogenic markers vinculin, collagen type 1, osteopontin, and osteocalcin, compared to the pristine Ti surface. In vivo experiments using a rat model demonstrated that the TNT and hBMP-2/Ti surfaces, in particular the hBMP-2/TNT surface, improved osseointegration and showed a superior bone bonding ability compared to Ti. Our study revealed a synergistic role played by TiO2 nanotubes nanotopography and hBMP-2 in promoting initial osteoblast adhesion, proliferation, differentiation, and osseointegration, thus suggesting a promising method for better modifying the implant surface.


Sign in / Sign up

Export Citation Format

Share Document