scholarly journals Adaptive Neural Control of Nonaffine Nonlinear Systems without Differential Condition for Nonaffine Function

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Chaojiao Sun ◽  
Bo Jing ◽  
Zongcheng Liu

An adaptive neural control scheme is proposed for nonaffine nonlinear system without using the implicit function theorem or mean value theorem. The differential conditions on nonaffine nonlinear functions are removed. The control-gain function is modeled with the nonaffine function probably being indifferentiable. Furthermore, only a semibounded condition for nonaffine nonlinear function is required in the proposed method, and the basic idea of invariant set theory is then constructively introduced to cope with the difficulty in the control design for nonaffine nonlinear systems. It is rigorously proved that all the closed-loop signals are bounded and the tracking error converges to a small residual set asymptotically. Finally, simulation examples are provided to demonstrate the effectiveness of the designed method.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Man Yang ◽  
Qiang Zhang ◽  
Ke Xu ◽  
Ming Chen

In this article, by utilizing the predefined-time stability theory, the predefined-time output tracking control problem for perturbed uncertain nonlinear systems with pure-feedback structure is addressed. The nonaffine structure of the original system is simplified as an affine form via the property of the mean value theorem. Furthermore, the design difficulty from the uncertain nonlinear function is overcome by the excellent approximation performance of RBF neural networks (NNs). An adaptive predefined-time controller is designed by introducing the finite-time differentiator which is used to decrease the computational complexity problem appeared in the traditional backstepping control. It is proved that the proposed control method guarantees all signals in the closed-loop system remain bound and the tracking error converges to zero within the predefined time. Based on the controller designed in this paper, the expected results can be obtained in predefined time, which can be illustrated by the simulation results.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Xikui Liu ◽  
Yingying Ge ◽  
Yan Li

This paper solves the tracking control problem of a class of stochastic pure-feedback nonlinear systems with external disturbances and unknown hysteresis. By using the mean-value theorem, the problem of pure-feedback nonlinear function is solved. The direction-unknown hysteresis problem is solved with the aid of the Nussbaum function. The external disturbance problems can be solved by defining new Lyapunov functions. Using the backstepping technique, a new adaptive fuzzy control scheme is proposed. The results show that the proposed control scheme ensures that all signals of the closed-loop system are semiglobally uniformly bounded and the tracking error converges to the small neighborhood of origin in the sense of mean quartic value. Simulation results illustrate the effectiveness of the proposed control scheme.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Xiaoyan Qin

This paper studies the problem of the adaptive neural control for a class of high-order uncertain stochastic nonlinear systems. By using some techniques such as the backstepping recursive technique, Young’s inequality, and approximation capability, a novel adaptive neural control scheme is constructed. The proposed control method can guarantee that the signals of the closed-loop system are bounded in probability, and only one parameter needs to be updated online. One example is given to show the effectiveness of the proposed control method.


2017 ◽  
Vol 14 (1) ◽  
pp. 172988141668270 ◽  
Author(s):  
Zhonghua Wu ◽  
Jingchao Lu ◽  
Jingping Shi ◽  
Qing Zhou ◽  
Xiaobo Qu

A robust adaptive neural control scheme based on a back-stepping technique is developed for the longitudinal dynamics of a flexible hypersonic flight vehicle, which is able to ensure the state tracking error being confined in the prescribed bounds, in spite of the existing model uncertainties and actuator constraints. Minimal learning parameter technique–based neural networks are used to estimate the model uncertainties; thus, the amount of online updated parameters is largely lessened, and the prior information of the aerodynamic parameters is dispensable. With the utilization of an assistant compensation system, the problem of actuator constraint is overcome. By combining the prescribed performance function and sliding mode differentiator into the neural back-stepping control design procedure, a composite state tracking error constrained adaptive neural control approach is presented, and a new type of adaptive law is constructed. As compared with other adaptive neural control designs for hypersonic flight vehicle, the proposed composite control scheme exhibits not only low-computation property but also strong robustness. Finally, two comparative simulations are performed to demonstrate the robustness of this neural prescribed performance controller.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Ruliang Wang ◽  
Jie Li

This paper considers an adaptive neural control for a class of outputs time-delay nonlinear systems with perturbed or no. Based on RBF neural networks, the radius basis function (RBF) neural networks is employed to estimate the unknown continuous functions. The proposed control guarantees that all closed-loop signals remain bounded. The simulation results demonstrate the effectiveness of the proposed control scheme.


2020 ◽  
Vol 53 (4) ◽  
pp. 493-498
Author(s):  
Assem Thabet ◽  
Ghazi Bel Haj Frej ◽  
Noussaiba Gasmi ◽  
Brahim Metoui

This brief discusses a simple stabilization strategy for a class of Lipschitz nonlinear systems based on the transformation of nonlinear function to Linear Parameter Varying system. Due to the introduction of the Differential Mean Value Theorem (DMVT), the dynamic and output nonlinear functions are transformed into Linear Parameter Varying (LPV) functions. This allows to increase the number of decision variables in the constraint to be resolved and, then, get less conservative and more general Linear Matrix Inequality (LMI) conditions. The established sufficient stability conditions are in the form of LMI with the introduction of a cost control to ensure closed-loop stability. Finally, Real Time Implementation (RTI) using a DSP device (ARDUINO UNO R3) to a typical robot is given to illustrate the performances of the proposed method with a comparison to some existing results.


Sign in / Sign up

Export Citation Format

Share Document