scholarly journals Hyers-Ulam Stability of Fractional Nabla Difference Equations

2016 ◽  
Vol 2016 ◽  
pp. 1-5
Author(s):  
Jagan Mohan Jonnalagadda

We investigate the Hyers-Ulam stability, the generalized Hyers-Ulam stability, and the Fα-Hyers-Ulam stability of a linear fractional nabla difference equation using discrete Laplace transform. We provide a few examples to illustrate the applicability of established results.

2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Douglas R. Anderson ◽  
Masakazu Onitsuka

Many applications using discrete dynamics employ either q-difference equations or h-difference equations. In this work, we introduce and study the Hyers–Ulam stability (HUS) of a quantum (q-difference) equation of Euler type. In particular, we show a direct connection between quantum equations of Euler type and h-difference equations of constant step size h with constant coefficients and an arbitrary integer order. For equation orders greater than two, the h-difference results extend first-order and second-order results found in the literature, and the Euler-type q-difference results are completely novel for any order. In many cases, the best HUS constant is found.


2001 ◽  
Vol 11 (02) ◽  
pp. 311-419 ◽  
Author(s):  
VALERY I. SBITNEV ◽  
TAO YANG ◽  
LEON O. CHUA

In this paper we use an exponential conformal mapping and a z-transform to "translate" the local activity criteria for continuous-time reaction–diffusion cellular nonlinear networks (CNN) to those for difference-equation CNNs. A difference-equation CNN is modeled by a set of difference equations with a constant sampling interval δt>0. Since a difference-equation CNN tends to a continuous-time CNN when δt→0, we can view the Laplace transform of a continuous-time CNN as the limit of the conformal-mapping z-transform of a corresponding difference-equation CNN. Based on the relation between Laplace transform and our conformal-mapping z-transform, we extend the local activity criteria from a continuous-time CNN to a difference-equation CNN. We have proved the rather surprising result that the class of all reaction–diffusion difference-equation CNNs with two state variables and one diffusion coefficient is locally active everywhere, i.e. its local passive region is empty. In particular, as δt→0, the local-passive region of a continuous-time CNN cell transforms into the "edge-of-chaos" region of a corresponding difference-equation CNN cell with δt>0. Remarkably, as δt→0 the locally active edge-of-chaos region degenerates into a locally passive region as the difference equation tends to a differential equation. These results highlight a fundamental difference between the qualitative properties of systems of nonlinear differential- and difference-equations.


2020 ◽  
Vol 23 (2) ◽  
pp. 571-590
Author(s):  
Mei Wang ◽  
Baoguo Jia ◽  
Feifei Du ◽  
Xiang Liu

AbstractIn this paper, an integral inequality and the fractional Halanay inequalities with bounded time delays in fractional difference are investigated. By these inequalities, the asymptotical stability conditions of Caputo and Riemann-Liouville fractional difference equation with bounded time delays are obtained. Several examples are presented to illustrate the results.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Saïd Abbas ◽  
Mouffak Benchohra ◽  
Nadjet Laledj ◽  
Yong Zhou

AbstractThis paper deals with some existence, uniqueness and Ulam–Hyers–Rassias stability results for a class of implicit fractional q-difference equations. Some applications are made of some fixed point theorems in Banach spaces for the existence and uniqueness of solutions, next we prove that our problem is generalized Ulam–Hyers–Rassias stable. Two illustrative examples are given in the last section.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Stevo Stević ◽  
Bratislav Iričanin ◽  
Witold Kosmala ◽  
Zdeněk Šmarda

Abstract It is known that every solution to the second-order difference equation $x_{n}=x_{n-1}+x_{n-2}=0$ x n = x n − 1 + x n − 2 = 0 , $n\ge 2$ n ≥ 2 , can be written in the following form $x_{n}=x_{0}f_{n-1}+x_{1}f_{n}$ x n = x 0 f n − 1 + x 1 f n , where $f_{n}$ f n is the Fibonacci sequence. Here we find all the homogeneous linear difference equations with constant coefficients of any order whose general solution have a representation of a related form. We also present an interesting elementary procedure for finding a representation of general solution to any homogeneous linear difference equation with constant coefficients in terms of the coefficients of the equation, initial values, and an extension of the Fibonacci sequence. This is done for the case when all the roots of the characteristic polynomial associated with the equation are mutually different, and then it is shown that such obtained representation also holds in other cases. It is also shown that during application of the procedure the extension of the Fibonacci sequence appears naturally.


Author(s):  
Robert Stegliński

AbstractIn this work, we establish optimal Lyapunov-type inequalities for the second-order difference equation with p-Laplacian $$\begin{aligned} \Delta (\left| \Delta u(k-1)\right| ^{p-2}\Delta u(k-1))+a(k)\left| u(k)\right| ^{p-2}u(k)=0 \end{aligned}$$ Δ ( Δ u ( k - 1 ) p - 2 Δ u ( k - 1 ) ) + a ( k ) u ( k ) p - 2 u ( k ) = 0 with Dirichlet, Neumann, mixed, periodic and anti-periodic boundary conditions.


2008 ◽  
Vol 144 (4) ◽  
pp. 867-919 ◽  
Author(s):  
Andrea Pulita

AbstractWe develop the theory of p-adic confluence of q-difference equations. The main result is the fact that, in the p-adic framework, a function is a (Taylor) solution of a differential equation if and only if it is a solution of a q-difference equation. This fact implies an equivalence, called confluence, between the category of differential equations and those of q-difference equations. We develop this theory by introducing a category of sheaves on the disk D−(1,1), for which the stalk at 1 is a differential equation, the stalk at q isa q-difference equation if q is not a root of unity, and the stalk at a root of unity ξ is a mixed object, formed by a differential equation and an action of σξ.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
S. Hristova ◽  
A. Golev ◽  
K. Stefanova

The object of investigation of the paper is a special type of difference equations containing the maximum value of the unknown function over a past time interval. These equations are adequate models of real processes which present state depends significantly on their maximal value over a past time interval. An algorithm based on the quasilinearization method is suggested to solve approximately the initial value problem for the given difference equation. Every successive approximation of the unknown solution is the unique solution of an appropriately constructed initial value problem for a linear difference equation with “maxima,” and a formula for its explicit form is given. Also, each approximation is a lower/upper solution of the given mixed problem. It is proved the quadratic convergence of the successive approximations. The suggested algorithm is realized as a computer program, and it is applied to an example, illustrating the advantages of the suggested scheme.


2018 ◽  
Vol 102 (555) ◽  
pp. 428-434
Author(s):  
Stephen Kaczkowski

Difference equations have a wide variety of applications, including fluid flow analysis, wave propagation, circuit theory, the study of traffic patterns, queueing analysis, diffusion theory, and many others. Besides these applications, studies into the analogy between ordinary differential equations (ODEs) and difference equations have been a favourite topic of mathematicians (e.g. see [1] and [2]). These applications and studies bring to light the similar character of the solutions of a difference equation with a fixed step size and a corresponding ODE.Also, an important numerical technique for solving both ordinary and partial differential equations (PDEs) is the method of finite differences [3], whereby a difference equation with a small step size is utilised to obtain a numerical solution of a differential equation. In this paper, elements of both of these ideas will be used to solve some intriguing problems in pure and applied mathematics.


Sign in / Sign up

Export Citation Format

Share Document