scholarly journals Performance Analysis of Novel Overload Control with Threshold Mechanism

2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Doo Il Choi ◽  
Dae-Eun Lim

We propose a novel overload control method with hysteresis property; that is, we analyze theM/G/1/Kqueueing system where the service and arrival rates are varied depending on the queue-length. We use two threshold values:L1(≤L2)andL2(≤K). When the queue-length increases by an amount betweenL1andL2, we apply one of the following two strategies to reduce the queue-length, either we decrease the mean service time or we decrease the arrival rate. If the queue-length exceedsL2with one strategy, we apply the other; thus, there are two models that depend on the method that was applied first. We derive the queue-length distribution at departure and at arbitrary epochs using the embedded Markov chain method and the supplementary variable method. We investigate performance measures including the loss probability and mean waiting time using various numerical examples.

1994 ◽  
Vol 31 (A) ◽  
pp. 251-267
Author(s):  
D. J. Daley ◽  
L. D. Servi

Certain last-exit and first-passage probabilities for random walks are approximated via a heuristic method suggested by a ladder variable argument. They yield satisfactory approximations of the first- and second-order moments of the queue length within a busy period of an M/D/1 queue. The approximation is applied to the wider class of random walks that arise in studying M/GI/1 queues. For gamma-distributed service times the queue length distribution is independent of the arrival rate. For other distributions where the arrival rate affects the queue length distribution, we have to use conjugate distributions in order to exploit a local central limit property. The limit underlying the approximation has the nature of a Brownian excursion. The source of the problem lies in recent queueing inference work; the connection with Takács' interests comes from both queueing theory and the ballot theorem.


1992 ◽  
Vol 29 (3) ◽  
pp. 713-732 ◽  
Author(s):  
D. J. Daley ◽  
L. D. Servi

The use of taboo probabilities in Markov chains simplifies the task of calculating the queue-length distribution from data recording customer departure times and service commencement times such as might be available from automatic bank-teller machine transaction records or the output of telecommunication network nodes. For the case of Poisson arrivals, this permits the construction of a new simple exact O(n3) algorithm for busy periods with n customers and an O(n2 log n) algorithm which is empirically verified to be within any prespecified accuracy of the exact algorithm. The algorithm is extended to the case of Erlang-k interarrival times, and can also cope with finite buffers and the real-time estimates problem when the arrival rate is known.


1992 ◽  
Vol 29 (03) ◽  
pp. 713-732 ◽  
Author(s):  
D. J. Daley ◽  
L. D. Servi

The use of taboo probabilities in Markov chains simplifies the task of calculating the queue-length distribution from data recording customer departure times and service commencement times such as might be available from automatic bank-teller machine transaction records or the output of telecommunication network nodes. For the case of Poisson arrivals, this permits the construction of a new simple exact O(n 3) algorithm for busy periods with n customers and an O(n 2 log n) algorithm which is empirically verified to be within any prespecified accuracy of the exact algorithm. The algorithm is extended to the case of Erlang-k interarrival times, and can also cope with finite buffers and the real-time estimates problem when the arrival rate is known.


1994 ◽  
Vol 31 (A) ◽  
pp. 251-267 ◽  
Author(s):  
D. J. Daley ◽  
L. D. Servi

Certain last-exit and first-passage probabilities for random walks are approximated via a heuristic method suggested by a ladder variable argument. They yield satisfactory approximations of the first- and second-order moments of the queue length within a busy period of an M/D/1 queue. The approximation is applied to the wider class of random walks that arise in studying M/GI/1 queues. For gamma-distributed service times the queue length distribution is independent of the arrival rate. For other distributions where the arrival rate affects the queue length distribution, we have to use conjugate distributions in order to exploit a local central limit property. The limit underlying the approximation has the nature of a Brownian excursion.The source of the problem lies in recent queueing inference work; the connection with Takács' interests comes from both queueing theory and the ballot theorem.


Author(s):  
Miaomiao Yu

The purpose of this paper is to present an alternative algorithm for computing the stationary queue-length and system-length distributions of a single working vacation queue with renewal input batch arrival and exponential holding times. Here we assume that a group of customers arrives into the system, and they are served in batches not exceeding a specific number b. Because of batch arrival, the transition probability matrix of the corresponding embedded Markov chain for the working vacation queue has no skip-free-to-the-right property. Without considering whether the transition probability matrix has a special block structure, through the calculation of roots of the associated characteristic equation of the generating function of queue-length distribution immediately before batch arrival, we suggest a procedure to obtain the steady-state distributions of the number of customers in the queue at different epochs. Furthermore, we present the analytic results for the sojourn time of an arbitrary customer in a batch by utilizing the queue-length distribution at the pre-arrival epoch. Finally, various examples are provided to show the applicability of the numerical algorithm.


1979 ◽  
Vol 11 (01) ◽  
pp. 240-255 ◽  
Author(s):  
Per Hokstad

The asymptotic behaviour of the M/G/2 queue is studied. The difference-differential equations for the joint distribution of the number of customers present and of the remaining holding times for services in progress were obtained in Hokstad (1978a) (for M/G/m). In the present paper it is found that the general solution of these equations involves an arbitrary function. In order to decide which of the possible solutions is the answer to the queueing problem one has to consider the singularities of the Laplace transforms involved. When the service time has a rational Laplace transform, a method of obtaining the queue length distribution is outlined. For a couple of examples the explicit form of the generating function of the queue length is obtained.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Siew Khew Koh ◽  
Ah Hin Pooi ◽  
Yi Fei Tan

Consider the single server queue in which the system capacity is infinite and the customers are served on a first come, first served basis. Suppose the probability density functionf(t)and the cumulative distribution functionF(t)of the interarrival time are such that the ratef(t)/1-F(t)tends to a constant ast→∞, and the rate computed from the distribution of the service time tends to another constant. When the queue is in a stationary state, we derive a set of equations for the probabilities of the queue length and the states of the arrival and service processes. Solving the equations, we obtain approximate results for the stationary probabilities which can be used to obtain the stationary queue length distribution and waiting time distribution of a customer who arrives when the queue is in the stationary state.


ETRI Journal ◽  
1994 ◽  
Vol 15 (3) ◽  
pp. 35-45 ◽  
Author(s):  
Kyu-Seok Lee ◽  
Hong Shik Park

Sign in / Sign up

Export Citation Format

Share Document