scholarly journals Alternative approach based on roots for computing the stationary queue-length distributions in GIX/M(1, b)/1 single working vacation queue

Author(s):  
Miaomiao Yu

The purpose of this paper is to present an alternative algorithm for computing the stationary queue-length and system-length distributions of a single working vacation queue with renewal input batch arrival and exponential holding times. Here we assume that a group of customers arrives into the system, and they are served in batches not exceeding a specific number b. Because of batch arrival, the transition probability matrix of the corresponding embedded Markov chain for the working vacation queue has no skip-free-to-the-right property. Without considering whether the transition probability matrix has a special block structure, through the calculation of roots of the associated characteristic equation of the generating function of queue-length distribution immediately before batch arrival, we suggest a procedure to obtain the steady-state distributions of the number of customers in the queue at different epochs. Furthermore, we present the analytic results for the sojourn time of an arbitrary customer in a batch by utilizing the queue-length distribution at the pre-arrival epoch. Finally, various examples are provided to show the applicability of the numerical algorithm.

1979 ◽  
Vol 11 (01) ◽  
pp. 240-255 ◽  
Author(s):  
Per Hokstad

The asymptotic behaviour of the M/G/2 queue is studied. The difference-differential equations for the joint distribution of the number of customers present and of the remaining holding times for services in progress were obtained in Hokstad (1978a) (for M/G/m). In the present paper it is found that the general solution of these equations involves an arbitrary function. In order to decide which of the possible solutions is the answer to the queueing problem one has to consider the singularities of the Laplace transforms involved. When the service time has a rational Laplace transform, a method of obtaining the queue length distribution is outlined. For a couple of examples the explicit form of the generating function of the queue length is obtained.


2008 ◽  
Vol 40 (2) ◽  
pp. 548-577 ◽  
Author(s):  
David Gamarnik ◽  
Petar Momčilović

We consider a multiserver queue in the Halfin-Whitt regime: as the number of serversngrows without a bound, the utilization approaches 1 from below at the rateAssuming that the service time distribution is lattice valued with a finite support, we characterize the limiting scaled stationary queue length distribution in terms of the stationary distribution of an explicitly constructed Markov chain. Furthermore, we obtain an explicit expression for the critical exponent for the moment generating function of a limiting stationary queue length. This exponent has a compact representation in terms of three parameters: the amount of spare capacity and the coefficients of variation of interarrival and service times. Interestingly, it matches an analogous exponent corresponding to a single-server queue in the conventional heavy-traffic regime.


1971 ◽  
Vol 8 (3) ◽  
pp. 480-493 ◽  
Author(s):  
Hisashi Mine ◽  
Katsuhisa Ohno

Fixed-cycle traffic light queues have been investigated by probabilistic methods by many authors. Beckmann, McGuire and Winsten (1956) considered a discrete time queueing model with binomial arrivals and regular departure headways and derived a relation between the stationary mean delay per vehicle and the stationary mean queue-length at the beginning of a red period of the traffic light. Haight (1959) and Buckley and Wheeler (1964) considered models with Poisson arrivals and regular departure headways and investigated certain properties of the queue-length. Newell (1960) dealt with the model proposed by the first authors and obtained the probability generating function of the stationary queue-length distribution. Darroch (1964) discussed a more general discrete time model with stationary, independent arrivals and regular departure headways and derived a necessary and sufficient condition for the stationary queue-length distribution to exist and obtained its probability generating function. The above two authors, Little (1961), Miller (1963), Newell (1965), McNeil (1968), Siskind (1970) and others gave approximate expressions for the stationary mean delay per vehicle for fixed-cycle traffic light queues of various types. All of the authors mentioned above dealt with the queue-length.


1996 ◽  
Vol 7 (5) ◽  
pp. 519-543 ◽  
Author(s):  
Yongzhi Yang ◽  
Charles Knessl

We consider the GI/M/1 – K queue which has a capacity of K customers. Using singular perturbation methods, we construct asymptotic approximations to the stationary queue length distribution. We assume that K is large and treat several different parameter regimes. Extensive numerical comparisons are used to show the quality of the proposed approximations.


1979 ◽  
Vol 11 (1) ◽  
pp. 240-255 ◽  
Author(s):  
Per Hokstad

The asymptotic behaviour of the M/G/2 queue is studied. The difference-differential equations for the joint distribution of the number of customers present and of the remaining holding times for services in progress were obtained in Hokstad (1978a) (for M/G/m). In the present paper it is found that the general solution of these equations involves an arbitrary function.In order to decide which of the possible solutions is the answer to the queueing problem one has to consider the singularities of the Laplace transforms involved. When the service time has a rational Laplace transform, a method of obtaining the queue length distribution is outlined. For a couple of examples the explicit form of the generating function of the queue length is obtained.


Author(s):  
Yang Woo Shin ◽  
Chareles E. M. Pearce

AbstractWe treat a single-server vacation queue with queue-length dependent vacation schedules. This subsumes the single-server vacation queue with exhaustive service discipline and the vacation queue with Bernoulli schedule as special cases. The lengths of vacation times depend on the number of customers in the system at the beginning of a vacation. The arrival process is a batch-Markovian arrival process (BMAP). We derive the queue-length distribution at departure epochs. By using a semi-Markov process technique, we obtain the Laplace-Stieltjes transform of the transient queue-length distribution at an arbitrary time point and its limiting distribution


2000 ◽  
Vol 37 (04) ◽  
pp. 1092-1098
Author(s):  
Olivier Brun ◽  
Jean-Marie Garcia

Although the M/D/1/N queueing model is well solved from a computational point of view, there is no known analytical expression of the queue length distribution. In this paper, we derive closed-form formulae for the distribution of the number of customers in the system in the finite-capacity M/D/1 queue. We also give an explicit solution for the mean queue length and the average waiting time.


Sign in / Sign up

Export Citation Format

Share Document