threshold mechanism
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 19)

H-INDEX

17
(FIVE YEARS 1)

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5127
Author(s):  
Fatima Salma Sadek ◽  
Khaled Belkadi ◽  
Abdelhafid Abouaissa ◽  
Pascal Lorenz

One of the central communication infrastructures of the Internet of Things (IoT) is the IEEE 802.15.4 standard, which defines Low Rate Wireless Personal Area Networks (LR- WPAN). In order to share the medium fairly in a non-beacon-enabled mode, the standard uses Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA). The nature of connected objects with respect to various resource constraints makes them vulnerable to cyber attacks. One of the most aggressive DoS attacks is the greedy behaviour attack which aims to deprive legitimate nodes to access to the communication medium. The greedy or selfish node may violate the proper use of the CSMA/CA protocol, by tampering its parameters, in order to take as much bandwidth as possible on the network, and then monopolize access to the medium by depriving legitimate nodes of communication. Based on the analysis of the difference between parameters of greedy and legitimate nodes, we propose a method based on the threshold mechanism to identify greedy nodes. The simulation results show that the proposed mechanism provides a detection efficiency of 99.5%.


Author(s):  
Bernard Korzeniewski

Simulations carried out using a previously-developed model of the skeletal muscle bioenergetic system, involving the "Pi double-threshold" mechanism of muscle fatigue, lead to the conclusion that a decrease in the oxidative phosphorylation (OXPHOS) activity, caused by mutations in mitochondrial or nuclear DNA, is the main mechanism underlying the changes in the kinetic properties of the system in mitochondrial myopathies (MM). These changes generally involve the very-heavy-exercise-like behavior and exercise termination because of fatigue at low work intensities. In particular, a sufficiently large (at a given work intensity) decrease in OXPHOS activity leads to slowing of the primary phase II of the V̇O2 on-kinetics, decrease in V̇O2max, appearance of the slow component of the V̇O2 on-kinetics, exercise intolerance and lactic acidosis at relatively low power outputs encountered in experimental studies in MM patients. Thus, the "Pi double-threshold" mechanism of muscle fatigue is able to account, at least semi-quantitatively, for various kinetic effects of inborn OXPHOS deficiencies of the skeletal muscle bioenergetic system. Exercise can be potentially lengthened and V̇O2max elevated in MM patients through an increase in peak Pi (Pipeak), at which exercise is terminated because of fatigue. Generally, a mechanism underlying the kinetic effects of OXPHOS deficiencies on the skeletal muscle bioenergetic system in MM is proposed that was absent in the literature.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1515
Author(s):  
Maciej Sobieraj ◽  
Piotr Zwierzykowski ◽  
Erich Leitgeb

DWDM networks make use of optical switching networks that allow light waves of multiple lengths to be serviced and provide the possibility of converting them appropriately. Research work on optical switching networks focuses on two main areas of interest: new non-blocking structures for optical switching networks and finding traffic characteristics of switching networks of the structures that are already well known. In practical design of switching nodes in optical networks, in many cases, the Clos switching networks are successfully used. Clos switching networks are also used in Elastic Optical Networks that can effectively manage allocation of resources to individual multi-service traffic streams. The research outcomes presented in this article deal with the problems of finding traffic characteristics in blocking optical switching networks with known structures. This article aims at presenting an analysis of the influence of traffic management threshold mechanisms on the traffic characteristics of multi-service blocking Clos switching networks that are used in the nodes of elastic optical networks as well as their influence on the traffic efficiency of network nodes. The analysis was carried out on the basis of research studies performed in a specially dedicated purpose-made simulation environment. The article presents a description of the simulation environment used in the experiments. The study was focused on the influence of the threshold mechanism, which is one of the most commonly used and elastic traffic management mechanisms, and on the traffic characteristics of switching networks that service different mixtures of multi-service Erlang, Engset and Pascal traffic streams. The conducted study validates the operational effectiveness and practicality of the application of the threshold mechanism to model traffic characteristics of nodes in an elastic optical network.


2021 ◽  
Author(s):  
Lina Wang ◽  
Ross Woods

<p>Climate warming has caused in a significant decrease in snowpack, increase in precipitation intensity and earlier melt onset. Based on earlier work published in 2014 on changes in streamflow resulting from a shift from snow towards rain, we analysed the sensitivity of seasonal streamflow to the average annual snow fraction in 253 catchments in CAMELS dataset, which have a record length more than 28 years and mean annual snow fraction larger than 15%. The result shows that places (or years) with higher mean annual snow fraction tend to have higher seasonal streamflow. We quantified seasonal sensitivity as a ratio of change in seasonal flow to change in annual snow fraction, for a given annual precipitation.  There are 91%,57% and 51% catchments which showed a positive sensitivity value for Spring, Summer and Winter streamflow, respectively. According to the results of seasonal sensitivity analysis in climate space, we found the largest seasonal sensitivity normally happens at the same regional climate. Places with higher average annual snow fraction tend to have the largest sensitivity in summer, while for places with lower annual snow fraction this largest sensitivity occurs in spring.</p><p>In order to explore the mechanism(s) by which snow fraction change affects seasonal streamflow, we summarized four hypothesised mechanisms from the literature: water-energy synchrony (Mechanism I), inputs exceed threshold (Mechanism II), demand-storage competition (Mechanism III), and energy partitioning (Mechanism IV). Most of the catchments in the western part of the contiguous US can be explained by the mechanism I, II, III and IV, while for catchments in the central US can be explained by mechanism II, III and IV. Catchments in the eastern part (and some scattered in the northern part) can be explained by mechanism III.  Other types of evidence are required to further distinguish between mechanisms in much of the USA. in further research we will use detailed data or hydrologic model to reproduce the hydrological process to find what are the hydrological processes responsible for precipitation phase partitioning changing with climate warming to influence catchment response. These findings would provide an evidence for how does snow affect hydrology, which may help to understand the effect of climate warming on future water resources in snow-dominated regions.</p>


2021 ◽  
Vol 120 (3) ◽  
pp. 261a
Author(s):  
Gregor Neuert ◽  
Amanda Johnson ◽  
Guoliang Li ◽  
Hossein Jashnsaz ◽  
Alexander Thiemicke ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Hanqing Ma ◽  
Bing Jia ◽  
Yuye Li ◽  
Huaguang Gu

Postinhibitory facilitation (PIF) of neural firing presents a paradoxical phenomenon that the inhibitory effect induces enhancement instead of reduction of the firing activity, which plays important roles in sound location of the auditory nervous system, awaited theoretical explanations. In the present paper, excitability and threshold mechanism for the PIF phenomenon is presented in the Morris-Lecar model with type I, II, and III excitabilities. Firstly, compared with the purely excitatory stimulations applied to the steady state, the inhibitory preceding excitatory stimulation to form pairs induces the firing rate increased for type II and III excitabilities instead of type I excitability, when the interval between the inhibitory and excitatory stimulation within each pair is suitable. Secondly, the threshold mechanism for the PIF phenomenon is acquired. For type II and III excitabilities, the inhibitory stimulation induces subthreshold oscillations around the steady state. During the middle and ending phase of the ascending part and the beginning phase of the descending part within a period of the subthreshold oscillations, the threshold to evoke an action potential by an excitatory stimulation becomes weaker, which is the cause for the PIF phenomenon. Last, a theoretical estimation for the range of the interval between the inhibitory and excitatory stimulation for the PIF phenomenon is acquired, which approximates half of the intrinsic period of the subthreshold oscillations for the relatively strong stimulations and becomes narrower for the relatively weak stimulations. The interval for the PIF phenomenon is much shorter for type III excitability, which is closer to the experiment observation, due to the shorter period of the subthreshold oscillations. The results present the excitability and threshold mechanism for the PIF phenomenon, which provide comprehensive and deep explanations to the PIF phenomenon.


Sign in / Sign up

Export Citation Format

Share Document