scholarly journals Constraints to Dark Matter from Inert Higgs Doublet Model

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Marco Aurelio Díaz ◽  
Benjamin Koch ◽  
Sebastián Urrutia-Quiroga

We study the Inert Higgs Doublet Model and its inert scalar HiggsHas the only source for dark matter. It is found that three mass regions of the inert scalar Higgs can give the correct dark matter relic density. The low mass region (between 3 and 50 GeV) is ruled out. New direct dark matter detection experiments will probe the intermediate (between 60 and 100 GeV) and high (heavier than 550 GeV) mass regions. Collider experiments are advised to search forD±→HW±decay in the two jets plus missing energy channel.

2021 ◽  
Vol 104 (7) ◽  
Author(s):  
Shankha Banerjee ◽  
Fawzi Boudjema ◽  
Nabarun Chakrabarty ◽  
Hao Sun

2007 ◽  
Vol 22 (25n28) ◽  
pp. 2121-2129 ◽  
Author(s):  
XIAO-GANG HE ◽  
HO-CHIN TSAI ◽  
TONG LI ◽  
XUE-QIAN LI

We study possible observational effects of scalar dark matter, the darkon D, in Higgs h and top quark t decay processes, h → DD and t → cDD in the minimal Standard Model (SM) and its two Higgs doublet model (THDM) extension supplemented with a SM singlet darkon scalar field D. We find that the darkon D can have a mass in the range of sub-GeV to several tens of GeV, interesting for LHC and ILC colliders, to produce the required dark matter relic density. In the SM with a darkon, t → cDD only occurs at loop level giving a very small rate, while the rate for Higgs decay h → DD can be large. In THDM III with a darkon, where tree level flavor changing neutral current (FCNC) interaction exists, a sizable rate for t → cDD is also possible.


2018 ◽  
Vol 98 (3) ◽  
Author(s):  
Lei Wang ◽  
Rongle Shi ◽  
Xiao-Fang Han ◽  
Bin Zhu

2019 ◽  
Vol 79 (11) ◽  
Author(s):  
Daniel Dercks ◽  
Tania Robens

AbstractIn this work, we use a recast of the Run II search for invisible Higgs decays within Vector Boson Fusion to constrain the parameter space of the Inert Doublet model, a two Higgs doublet model with a dark matter candidate. When including all known theoretical as well as collider constraints, we find that the above can rule out a relatively large part in the $$m_H,\,\lambda _{345}$$mH,λ345 parameter space, for dark scalar masses $$m_H\,\le \,100\,{\mathrm{GeV}}$$mH≤100GeV. Including the latest dark matter constraints, a smaller part of parameter space remains which is solely excluded from the above analysis. We also discuss the sensitivity of monojet searches and multilepton final states from Run II.


Sign in / Sign up

Export Citation Format

Share Document