scholarly journals The Dynamical Behaviors for a Class of Immunogenic Tumor Model with Delay

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Ping Bi ◽  
Zijian Liu ◽  
Mutei Damaris Muthoni ◽  
Jianhua Pang

This paper aims at studying the model proposed by Kuznetsov and Taylor in 1994. Inspired by Mayer et al., time delay is introduced in the general model. The dynamic behaviors of this model are studied, which include the existence and stability of the equilibria and Hopf bifurcation of the model with discrete delays. The properties of the bifurcated periodic solutions are studied by using the normal form on the center manifold. Numerical examples and simulations are given to illustrate the bifurcation analysis and the obtained results.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Shuling Yan ◽  
Xinze Lian ◽  
Weiming Wang ◽  
Youbin Wang

We investigate a modified delayed Leslie-Gower model under homogeneous Neumann boundary conditions. We give the stability analysis of the equilibria of the model and show the existence of Hopf bifurcation at the positive equilibrium under some conditions. Furthermore, we investigate the stability and direction of bifurcating periodic orbits by using normal form theorem and the center manifold theorem.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jianming Zhang ◽  
Lijun Zhang ◽  
Chaudry Masood Khalique

The dynamics of a prey-predator system with a finite delay is investigated. We show that a sequence of Hopf bifurcations occurs at the positive equilibrium as the delay increases. By using the theory of normal form and center manifold, explicit expressions for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are derived.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Qingsong Liu ◽  
Yiping Lin ◽  
Jingnan Cao ◽  
Jinde Cao

The local reaction-diffusion Lengyel-Epstein system with delay is investigated. By choosingτas bifurcating parameter, we show that Hopf bifurcations occur when time delay crosses a critical value. Moreover, we derive the equation describing the flow on the center manifold; then we give the formula for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions. Finally, numerical simulations are performed to support the analytical results and the chaotic behaviors are observed.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Xin-You Meng ◽  
Li Xiao

In this paper, a diffusion two-phytoplankton one-zooplankton model with time delay, Beddington–DeAnglis functional response, and Holling II functional response is proposed. First, the existence and local stability of all equilibria of such model are studied. Then, the existence of Hopf bifurcation of the corresponding model without diffusion is given by taking time delay as the bifurcation parameter. Next, the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are investigated by using the normal form theory and center manifold theorem. Furthermore, due to the local bifurcation theory of partial functional differential equations, Hopf bifurcation of the model is investigated by considering time delay as the bifurcation parameter. The explicit formulas to determine the properties of Hopf bifurcation are given by the method of the normal form theory and center manifold theorem for partial functional differential equations. Finally, some numerical simulations are performed to check out our theoretical results.


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Gang Zhu ◽  
Junjie Wei

The dynamics of a system of two semiconductor lasers, which are delay coupled via a passive relay within the synchronization manifold, are investigated. Depending on the coupling parameters, the system exhibits synchronized Hopf bifurcation and the stability switches as the delay varies. Employing the center manifold theorem and normal form method, an algorithm is derived for determining the Hopf bifurcation properties. Some numerical simulations are carried out to illustrate the analysis results.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yanhui Zhai ◽  
Haiyun Bai ◽  
Ying Xiong ◽  
Xiaona Ma

This paper mainly modifies and further develops the Reyleigh price model. By modifying the basic Reyleigh model, we can more accurately illustrate the economic phenomena with price varying. First, we research the dynamics of the modified Reyleigh model with time delay. By employing the normal form theory and center manifold theory, we obtain some testable results on these issues. The conclusion confirms that a Hopf bifurcation occurs due to the existence of stability switches when the delay varies. Finally, some numerical simulations are given to illustrate the effectiveness of our results.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Chunming Zhang ◽  
Wanping Liu ◽  
Jing Xiao ◽  
Yun Zhao

A model applicable to describe the propagation of computer virus is developed and studied, along with the latent time incorporated. We regard time delay as a bifurcating parameter to study the dynamical behaviors including local asymptotical stability and local Hopf bifurcation. By analyzing the associated characteristic equation, Hopf bifurcation occurs when the time delay passes through a sequence of critical values. A formula for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions is given by using the normal form method and center manifold theorem. Finally, illustrative examples are given to support the theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Haiyun Bai ◽  
Yanhui Zhai

We research the dynamics of the chemostat model with time delay. The conclusion confirms that a Hopf bifurcation occurs due to the existence of stability switches when the delay varies. By using the normal form theory and center manifold method, we derive the explicit formulas determining the stability and direction of bifurcating periodic solutions. Finally, some numerical simulations are given to illustrate the effectiveness of our results.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yue Zhang ◽  
Xue Li ◽  
Xianghua Zhang ◽  
Guisheng Yin

Epidemic models are normally used to describe the spread of infectious diseases. In this paper, we will discuss an epidemic model with time delay. Firstly, the existence of the positive fixed point is proven; and then, the stability and Hopf bifurcation are investigated by analyzing the distribution of the roots of the associated characteristic equations. Thirdly, the theory of normal form and manifold is used to drive an explicit algorithm for determining the direction of Hopf bifurcation and the stability of the bifurcation periodic solutions. Finally, some simulation results are carried out to validate our theoretic analysis.


Sign in / Sign up

Export Citation Format

Share Document