scholarly journals Positive Solutions of Fractional Differential Equations with p-Laplacian

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yuansheng Tian ◽  
Sujing Sun ◽  
Zhanbing Bai

The multiplicity of positive solution for a new class of four-point boundary value problem of fractional differential equations with p-Laplacian operator is investigated. By the use of the Leggett-Williams fixed-point theorem, the multiplicity results of positive solution are obtained. An example is given to illustrate the main results.

Filomat ◽  
2017 ◽  
Vol 31 (5) ◽  
pp. 1265-1277 ◽  
Author(s):  
Fatma Fen ◽  
Ilkay Karac ◽  
Ozlem Ozen

This work is devoted to the existence of positive solutions for nonlinear fractional differential equations with p-Laplacian operator. By using five functionals fixed point theorem, the existence of at least three positive solutions are obtained. As an application, an example is presented to demonstrate our main result.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Hongyu Li ◽  
Junting Zhang

In this paper, the existence of positive solutions in terms of different values of two parameters for a system of conformable-type fractional differential equations with the p-Laplacian operator is obtained via Guo-Krasnosel’skii fixed point theorem.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Qiuyan Zhong ◽  
Xingqiu Zhang ◽  
Xinyi Lu ◽  
Zhengqing Fu

In this article, by means of fixed point theorem on mixed monotone operator, we establish the uniqueness of positive solution for some nonlocal singular higher-order fractional differential equations involving arbitrary derivatives. We also give iterative schemes for approximating this unique positive solution.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2412
Author(s):  
Zidane Baitiche ◽  
Choukri Derbazi ◽  
Mouffak Benchohra ◽  
Yong Zhou

The current study is devoted to investigating the existence and uniqueness of solutions for a new class of symmetrically coupled system of nonlinear hyperbolic partial-fractional differential equations in generalized Banach spaces in the sense of ψ–Caputo partial fractional derivative. Our approach is based on the Krasnoselskii-type fixed point theorem in generalized Banach spaces and Perov’s fixed point theorem together with the Bielecki norm, while Urs’s approach was used to prove the Ulam–Hyers stability of solutions of our system. Finally, some examples are provided in order to illustrate our theoretical results.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Naveed Ahmad ◽  
Zeeshan Ali ◽  
Kamal Shah ◽  
Akbar Zada ◽  
Ghaus ur Rahman

We study the existence, uniqueness, and various kinds of Ulam–Hyers stability of the solutions to a nonlinear implicit type dynamical problem of impulsive fractional differential equations with nonlocal boundary conditions involving Caputo derivative. We develop conditions for uniqueness and existence by using the classical fixed point theorems such as Banach fixed point theorem and Krasnoselskii’s fixed point theorem. For stability, we utilized classical functional analysis. Also, an example is given to demonstrate our main theoretical results.


2021 ◽  
Vol 5 (4) ◽  
pp. 200
Author(s):  
Fatemeh Mottaghi ◽  
Chenkuan Li ◽  
Thabet Abdeljawad ◽  
Reza Saadati ◽  
Mohammad Bagher Ghaemi

Using Krasnoselskii’s fixed point theorem and Arzela–Ascoli theorem, we investigate the existence of solutions for a system of nonlinear ϕ-Hilfer fractional differential equations. Moreover, applying an alternative fixed point theorem due to Diaz and Margolis, we prove the Kummer stability of the system on the compact domains. We also apply our main results to study the existence and Kummer stability of Lotka–Volterra’s equations that are useful to describe and characterize the dynamics of biological systems.


2018 ◽  
Vol 23 (5) ◽  
pp. 771-801 ◽  
Author(s):  
Rodica Luca

>We investigate the existence and nonexistence of positive solutions for a system of nonlinear Riemann–Liouville fractional differential equations with parameters and p-Laplacian operator subject to multi-point boundary conditions, which contain fractional derivatives. The proof of our main existence results is based on the Guo–Krasnosel'skii fixed-point theorem.


Author(s):  
Haide Gou ◽  
Yongxiang Li

AbstractIn this paper, we used Henstock–Kurzweil–Pettis integral instead of classical integrals. Using fixed point theorem and weak measure of noncompactness, we study the existence of weak solutions of boundary value problem for fractional integro-differential equations in Banach spaces. Our results generalize some known results. Finally, an example is given to demonstrate the feasibility of our conclusions.


2019 ◽  
Vol 52 (1) ◽  
pp. 283-295 ◽  
Author(s):  
Manzoor Ahmad ◽  
Akbar Zada ◽  
Jehad Alzabut

AbstractIn this paper, existence and uniqueness of solution for a coupled impulsive Hilfer–Hadamard type fractional differential system are obtained by using Kransnoselskii’s fixed point theorem. Different types of Hyers–Ulam stability are also discussed.We provide an example demonstrating consistency to the theoretical findings.


Author(s):  
Mohamed I. Abbas

This paper is devoted to initial value problems for impulsive fractional differential equations of Caputo–Fabrizio type fractional derivative. By means of Banach’s fixed point theorem and Schaefer’s fixed point theorem, the existence and uniqueness results are obtained. Finally, an example is given to illustrate one of the main results.


Sign in / Sign up

Export Citation Format

Share Document