scholarly journals Computational Design Scheme for Wind Turbine Drive-Train Based on Lagrange Multipliers

2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Mohammed Saleh ◽  
Ayman Nada ◽  
Ahmed El-Betar ◽  
Ahmed El-Assal

The design optimization of wind turbines and their subsystems will make them competitive as an ideal alternative for energy. This paper proposed a design procedure for one of these subsystems, which is the Wind Turbine Drive-Train (WTDT). The design of the WTDT is based on the load assumptions and considered as the most significant parameter for increasing the efficiency of energy generation. In industry, these loads are supplemented by expert assumptions and manipulated to design the transmission elements. In contrary, in this work, the multibody system approach is used to estimate the static as well as dynamic loads based on the Lagrange multipliers. Lagrange multipliers are numerical parameters associated with the holonomic and nonholonomic constraints assigned in the drive-train model. The proposed scheme includes computational manipulations of kinematic constraints, mapping the generalized forces into Cartesian respective, and enactment of velocity-based constrains. Based on the dynamic model and the obtained forces, the design process of a planetary stage of WTDT is implemented with trade-off’s optimization in terms of gearing parameters. A wind turbine of 1.4 megawatts is introduced as an evaluation study of the proposed procedure, in which the main advantage is the systematic nature of designing complex systems in motion.

Wind Energy ◽  
2018 ◽  
Vol 21 (12) ◽  
pp. 1406-1422 ◽  
Author(s):  
Hongkun Zhang ◽  
Rubén Ortiz de Luna ◽  
Martin Pilas ◽  
Jan Wenske

2019 ◽  
Vol 44 (5) ◽  
pp. 519-547
Author(s):  
Saeed Asadi ◽  
Håkan Johansson

Wind turbines normally have a long operational lifetime and experience a wide range of operating conditions. A representative set of these conditions is considered as part of a design process, as codified in standards. However, operational experience shows that failures occur more frequently than expected, the costlier of these including failures in the main bearings and gearbox. As modern turbines are equipped with sophisticated online systems, an important task is to evaluate the drive train dynamics from online measurement data. In particular, internal forces leading to fatigue can only be determined indirectly from other locations’ sensors. In this contribution, a direct wind turbine drive train is modelled using the floating frame of reference formulation for a flexible multibody dynamics system. The purpose is to evaluate drive train response based on blade root forces and bedplate motions. The dynamic response is evaluated in terms of main shaft deformation and main bearing forces under different wind conditions. The model was found to correspond well to a commercial wind turbine system simulation software (ViDyn).


Sign in / Sign up

Export Citation Format

Share Document