Study on wind turbine drive train faults based on a semi-physical simulation platform

Author(s):  
Beth J. Xiang ◽  
Zifeng Wu ◽  
Qiong Shi ◽  
Bowen liu ◽  
Huadan Jiang
Wind Energy ◽  
2018 ◽  
Vol 21 (12) ◽  
pp. 1406-1422 ◽  
Author(s):  
Hongkun Zhang ◽  
Rubén Ortiz de Luna ◽  
Martin Pilas ◽  
Jan Wenske

2019 ◽  
Vol 44 (5) ◽  
pp. 519-547
Author(s):  
Saeed Asadi ◽  
Håkan Johansson

Wind turbines normally have a long operational lifetime and experience a wide range of operating conditions. A representative set of these conditions is considered as part of a design process, as codified in standards. However, operational experience shows that failures occur more frequently than expected, the costlier of these including failures in the main bearings and gearbox. As modern turbines are equipped with sophisticated online systems, an important task is to evaluate the drive train dynamics from online measurement data. In particular, internal forces leading to fatigue can only be determined indirectly from other locations’ sensors. In this contribution, a direct wind turbine drive train is modelled using the floating frame of reference formulation for a flexible multibody dynamics system. The purpose is to evaluate drive train response based on blade root forces and bedplate motions. The dynamic response is evaluated in terms of main shaft deformation and main bearing forces under different wind conditions. The model was found to correspond well to a commercial wind turbine system simulation software (ViDyn).


Sign in / Sign up

Export Citation Format

Share Document