scholarly journals Intelligent Controller Design for Quad-Rotor Stabilization in Presence of Parameter Variations

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Oualid Doukhi ◽  
Abdur Razzaq Fayjie ◽  
Deok Jin Lee

The paper presents the mathematical model of a quadrotor unmanned aerial vehicle (UAV) and the design of robust Self-Tuning PID controller based on fuzzy logic, which offers several advantages over certain types of conventional control methods, specifically in dealing with highly nonlinear systems and parameter uncertainty. The proposed controller is applied to the inner and outer loop for heading and position trajectory tracking control to handle the external disturbances caused by the variation in the payload weight during the flight period. The results of the numerical simulation using gazebo physics engine simulator and real-time experiment using AR drone 2.0 test bed demonstrate the effectiveness of this intelligent control strategy which can improve the robustness of the whole system and achieve accurate trajectory tracking control, comparing it with the conventional proportional integral derivative (PID).

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Chengshun Yang ◽  
Zhong Yang ◽  
Xiaoning Huang ◽  
Shaobin Li ◽  
Qiang Zhang

Modeling and trajectory tracking control of a novel six-rotor unmanned aerial vehicle (UAV) is concerned to solve problems such as smaller payload capacity and lack of both hardware redundancy and anticrosswind capability for quad-rotor. The mathematical modeling for the six-rotor UAV is developed on the basis of the Newton-Euler formalism, and a second-order sliding-mode disturbance observer (SOSMDO) is proposed to reconstruct the disturbances of the rotational dynamics. In consideration of the under-actuated and strong coupling properties of the six-rotor UAV, a nested double loops trajectory tracking control strategy is adopted. In the outer loop, a position error PID controller is designed, of which the task is to compare the desired trajectory with real position of the six-rotor UAV and export the desired attitude angles to the inner loop. In the inner loop, a rapid-convergent nonlinear differentiator (RCND) is proposed to calculate the derivatives of the virtual control signal, instead of using the analytical differentiation, to avoid “differential expansion” in the procedure of the attitude controller design. Finally, the validity and effectiveness of the proposed technique are demonstrated by the simulation results.


2020 ◽  
Vol 42 (15) ◽  
pp. 2956-2968
Author(s):  
Bo Li ◽  
Hanyu Ban ◽  
Wenquan Gong ◽  
Bing Xiao

This work presents a novel control strategy for the trajectory tracking control of the quadrotor unmanned aerial vehicle (UAV) with parameter uncertainties and external unknown disturbances. As a stepping stone, two fixed-time extended state observers (ESOs) are proposed to estimate the external disturbances and/or the parameter uncertainties for the position and attitude subsystems, respectively. Then, the fast terminal sliding mode-based improved dynamic surface control (DSC) approaches are developed. To eliminate the problem of “explosion of complexity” inherent in backstepping method-based controllers, the finite-time command filters and an error compensation signals are used in the design of the dynamic surface controllers. Subsequently, the practically finite-time stability of the closed-loop tracking system is guaranteed by utilizing the proposed control scheme. The simulation results are obtained to demonstrate the effectiveness and fine performance of the proposed trajectory tracking control approaches.


Author(s):  
Yuanyan Chen ◽  
J. Jim Zhu ◽  
Letian Lin

Abstract Conventional automatic trajectory tracking control technics for car-like ground vehicles typically decompose the controller into separate longitudinal driving control and lateral-directional steering control, owing to the nonholonomic kinematic constraint, highly nonlinear dynamics and control under-actuation of such vehicles. However, such decoupled control techniques inevitably impose operational constraints on agile maneuvers that may be critical in evading impending collisions, preventing loss-of-control of the vehicle, and special maneuvers that are needed for law enforcement missions. Thus, integrated three-Degree-of-Freedom (3DOF) tracking control of car-like ground vehicles are highly desirable but remains a challenging problem. There also appears to be a lack of research on automated reverse driving. In our previous work [ASME DSCC2017-5372, DSCC2018-9148], design and hardware validation test results of an integrated 3DOF trajectory tracking controller based on nonlinear kinematics and dynamics vehicle model using Trajectory Linearization Control (TLC) for forward driving have been reported. The present paper supplements that work with design and hardware validation test results on vehicle backward driving at fast and low speeds. The reverse driving control incurs minimal alteration to the original design with minimal tuning efforts due to the model-based TLC control approach, and it should be readily scaled-up to full-size vehicles and adapted to different types of autonomous ground vehicles with the knowledge of vehicles’ kinematics and dynamics parameters.


2011 ◽  
Vol 467-469 ◽  
pp. 1421-1426
Author(s):  
Zhi Cheng Hou ◽  
X. Gong ◽  
Y. Bai ◽  
Y.T. Tian ◽  
Q. Sun

This paper deals with the under-actuated characteristic of a quad-rotor unmanned aerial vehicle (UAV). By designing the double loop configuration, the autonomous trajectory tracking is realized. The model uncertainty, external disturbance and the senor noise are also taken into consideration. Then the controller is put forward in the inner loop. An optimal stability augmentation control (SAC) method is used to stabilize the horizon position and keep it away from oscillation. By calculating the nonlinear decouple map, control quantity is converted to the speeds of the four rotors. At last some simulation results and the prototype implementation prove that the control method is effective.


10.5772/6224 ◽  
2008 ◽  
Vol 5 (4) ◽  
pp. 38 ◽  
Author(s):  
Umesh Kumar ◽  
Nagarajan Sukavanam

For a four wheeled mobile robot a trajectory tracking concept is developed based on its kinematics. A trajectory is a time–indexed path in the plane consisting of position and orientation. The mobile robot is modeled as a non holonomic system subject to pure rolling, no slip constraints. To facilitate the controller design the kinematic equation can be converted into chained form using some change of co-ordinates. From the kinematic model of the robot a backstepping based tracking controller is derived. Simulation results demonstrate such trajectory tracking strategy for the kinematics indeed gives rise to an effective methodology to follow the desired trajectory asymptotically.


Sign in / Sign up

Export Citation Format

Share Document