Adaptive fuzzy exponential terminal sliding mode controller design for nonlinear trajectory tracking control of autonomous underwater vehicle

2018 ◽  
Vol 6 (4) ◽  
pp. 1690-1705 ◽  
Author(s):  
G. V. Lakhekar ◽  
L. M. Waghmare
2019 ◽  
Vol 43 (2) ◽  
pp. 179-188
Author(s):  
Yunbiao Jiang ◽  
Chen Guo ◽  
Haomiao Yu

This paper investigates the problem of three-dimensional trajectory tracking control for an underactuated autonomous underwater vehicle in the presence of uncertain disturbances. The concept of virtual velocity control is adopted and desired velocities are designed using the backstepping method. Then, the trajectory tracking problem is transformed into a stabilization problem of virtual velocity errors. Dynamic control laws are developed based on non-singular terminal sliding mode control to stabilize virtual velocity errors, and adaptive laws are introduced to deal with parameter perturbation and current disturbances. The stability of the closed-loop control system is analyzed based on Lyapunov stability theory. Two sets of typical simulations are carried out to verify the effectiveness and robustness of the trajectory tracking control algorithm under uncertain disturbances.


2019 ◽  
Vol 9 (13) ◽  
pp. 2625 ◽  
Author(s):  
Mengmeng Li ◽  
Qinglin Wang ◽  
Yuan Li ◽  
Zhaoguo Jiang

Dielectric electro-active polymer (DEAP) materials, also called artificial muscle, are a kind of EAP smart materials with extraordinary strains up to 30% at a high driving voltage. However, the asymmetric rate-dependent hysteresis is a barrier for trajectory tracking control of DEAP actuators. To overcome the barrier, in this paper, a Hammerstein model is established for the asymmetric rate-dependent hysteresis of a DEAP actuator first, in which a modified Prandtl-Ishlinskii (MPI) model is used to represent the static hysteresis nonlinear part, and an autoregressive with exogenous inputs (ARX) model is used to represent the linear dynamic part. Applying Levenberg-Marquardt (LM) algorithm identifies the parameters of the Hammerstein model. Then, based on the MPI model, an inverse hysteresis compensator is obtained to compensate the hysteresis behavior. Finally, a compound controller consisting of the hysteresis compensator and a novel discrete-time terminal sliding mode controller (DTSMC) without state observer is proposed to achieve the high-precision trajectory tracking control. Stability analysis of the closed-loop system is verified by using Lyapunov stability theorem. Experimental results based on a DEAP actuator show that the proposed controller has better tracking control performance compared with a conventional discrete-time sliding mode controller (DSMC).


2018 ◽  
Vol 15 (5) ◽  
pp. 172988141880674 ◽  
Author(s):  
Yunbiao Jiang ◽  
Chen Guo ◽  
Haomiao Yu

This article investigates the three-dimensional trajectory tracking control problem for an underactuated autonomous underwater vehicle in the presence of parameter perturbations and external disturbances. An adaptive robust controller is proposed based on the velocity control strategy and adaptive integral sliding mode control algorithm. First, the desired velocities are developed using coordinate transformation and the backstepping method, which is the necessary velocities for autonomous underwater vehicle to track the time-varying desired trajectory. The bioinspired neurodynamics is used to smooth the desired velocities, which effectively avoids the jump problem of the velocity and simplifies the derivative calculation. Then, the dynamic control laws are designed based on the adaptive integral sliding mode control to drive the underactuated autonomous underwater vehicle to sail at the desired velocities. At the same time, the auxiliary control laws and the adaptive laws are introduced to eliminate the influence of parameter perturbations and external disturbances, respectively. The stability of the control system is guaranteed by the Lyapunov theorem, which shows that the system is asymptotically stable and all tracking errors are asymptotically convergent. At the end, numerical simulations are carried out to demonstrate the effectiveness and robustness of the proposed controller.


Sign in / Sign up

Export Citation Format

Share Document