scholarly journals Mitochondria-Targeted Antioxidant SkQ1 Improves Dermal Wound Healing in Genetically Diabetic Mice

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Ilya A. Demyanenko ◽  
Vlada V. Zakharova ◽  
Olga P. Ilyinskaya ◽  
Tamara V. Vasilieva ◽  
Artem V. Fedorov ◽  
...  

Oxidative stress is widely recognized as an important factor in the delayed wound healing in diabetes. However, the role of mitochondrial reactive oxygen species in this process is unknown. It was assumed that mitochondrial reactive oxygen species are involved in many wound-healing processes in both diabetic humans and animals. We have applied the mitochondria-targeted antioxidant 10-(6′-plastoquinonyl)decyltriphenylphosphonium (SkQ1) to explore the role of mitochondrial reactive oxygen species in the wound healing of genetically diabetic mice. Healing of full-thickness excisional dermal wounds in diabetic C57BL/KsJ-db−/db− mice was significantly enhanced after long-term (12 weeks) administration of SkQ1. SkQ1 accelerated wound closure and stimulated epithelization, granulation tissue formation, and vascularization. On the 7th day after wounding, SkQ1 treatment increased the number of α-smooth muscle actin-positive cells (myofibroblasts), reduced the number of neutrophils, and increased macrophage infiltration. SkQ1 lowered lipid peroxidation level but did not change the level of the circulatory IL-6 and TNF. SkQ1 pretreatment also stimulated cell migration in a scratch-wound assay in vitro under hyperglycemic condition. Thus, a mitochondria-targeted antioxidant normalized both inflammatory and regenerative phases of wound healing in diabetic mice. Our results pointed to nearly all the major steps of wound healing as the target of excessive mitochondrial reactive oxygen species production in type II diabetes.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Sumitra Miriyala ◽  
Manikandan Panchatcharam ◽  
Meera Ramanujam ◽  
Rengarajulu Puvanakrishnan

Neutrophil infiltration plays a major role in the pathogenesis of myocardial injury. Oxidative injury is suggested to be a central mechanism of the cellular damage after acute myocardial infarction. This study is pertained to the prognostic role of a tetrapeptide derivative PEP1261 (BOC-Lys(BOC)-Arg-Asp-Ser(tBu)-OtBU), a peptide sequence (39–42) of lactoferrin, studied in the modulation of neutrophil functions in vitro by measuring the reactive oxygen species (ROS) generation, lysosomal enzymes release, and enhanced expression of C proteins. The groundwork experimentation was concerned with the isolation of neutrophils from the normal and acute myocardial infarct rats to find out the efficacy of PEP1261 in the presence of a powerful neutrophil stimulant, phorbol 12-myristate 13 acetate (PMA). Stimulation of neutrophils with PMA resulted in an oxidative burst of superoxide anion and enhanced release of lysosomal enzymes and expression of complement proteins. The present study further demonstrated that the free radicals increase the complement factors in the neutrophils confirming the role of ROS. PEP1261 treatment significantly reduced the levels of superoxide anion and inhibited the release of lysosomal enzymes in the stimulated control and infarct rat neutrophils. This study demonstrated that PEP1261 significantly inhibited the effect on the ROS generation as well as the mRNA synthesis and expression of the complement factors in neutrophils isolated from infarct heart.


2015 ◽  
Vol 14 (1) ◽  
pp. 89-96 ◽  
Author(s):  
Christopher Dunnill ◽  
Thomas Patton ◽  
James Brennan ◽  
John Barrett ◽  
Matthew Dryden ◽  
...  

2003 ◽  
Vol 17 (2) ◽  
pp. 153-157 ◽  
Author(s):  
I Altuntas ◽  
N Delibas ◽  
D.K Doguc ◽  
S Ozmen ◽  
F Gultekin

2007 ◽  
Vol 23 (12) ◽  
pp. 990-992 ◽  
Author(s):  
Tommaso Gori ◽  
Andreas Daiber ◽  
Giuseppe Di Stolfo ◽  
Silvia Sicuro ◽  
Saverio Dragoni ◽  
...  

2011 ◽  
Vol 54 (3) ◽  
pp. 97-101 ◽  
Author(s):  
Jiří Kanta

Wound healing is a complex physiological process important for tissue homeostasis. An acute injury initiates massive cell migration, proliferation and differentiation, synthesis of extracellular matrix components, scar formation and remodelling. Blood flow and tissue oxygenation are parts of the complex regulation of healing. Higher organisms utilize molecular oxygen as a terminal oxidant. This way of gaining energy for vital processes such as healing leads to the production of a number of oxygen compounds that may have a defensive or informatory role. They may be harmful when present in high concentrations. Both the lack and the excess of reactive oxygen species may influence healing negatively.


Sign in / Sign up

Export Citation Format

Share Document