m1 macrophage
Recently Published Documents


TOTAL DOCUMENTS

646
(FIVE YEARS 447)

H-INDEX

34
(FIVE YEARS 11)

2022 ◽  
Vol 12 ◽  
Author(s):  
Fenglian Yan ◽  
Dalei Cheng ◽  
Haiyan Wang ◽  
Min Gao ◽  
Junfeng Zhang ◽  
...  

Immune-mediated hepatic injury plays a key role in the initiation and pathogenesis of diverse liver diseases. However, treatment choice for immune-mediated hepatic injury remains limited. Corilagin, a natural ellagitannin extracted from various traditional Chinese medicines, has been demonstrated to exhibit multiple pharmacological activities, such as anti-inflammatory, anti-tumor, and hepatoprotective properties. The present study aimed to investigate the effects of corilagin on immune-mediated hepatic injury using a murine model of concanavalin A (Con A)-induced hepatitis, which is well-characterized to study acute immune-mediated hepatitis. Herein, mice were administered corilagin (25 mg/kg) intraperitoneally twice at 12 h intervals, and 1 h later, the mice were challenged with Con A (20 mg/kg body weight); serum and liver samples were collected after 12 h. The results showed that corilagin significantly increased the survival of mice and reduced serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels. In addition, corilagin markedly improved histopathological damage, hepatocyte apoptosis, and oxidative stress in the liver. The activation of M1 macrophages in the hepatic mononuclear cells was also significantly reduced compared with that in the control group. The expression of M1 macrophage-associated proinflammatory cytokines and genes, including interleukin (IL)-6, IL-12, and inducible nitric oxide synthase (iNOS), was also decreased after corilagin treatment. Finally, the results demonstrated that corilagin regulated macrophage polarization by modulating the mitogen-activated protein kinases (MAPK), nuclear factor (NF)-κB, and interferon regulatory factor (IRF) signaling pathways. Thus, the findings indicate that corilagin protects mice from Con A-induced immune-mediated hepatic injury by limiting M1 macrophage activation via the MAPK, NF-κB, and IRF signaling pathways, suggesting corilagin as a possible treatment choice for immune-mediated hepatic injury.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Yujie Xing ◽  
Shuo Pan ◽  
Ling Zhu ◽  
Qianwei Cui ◽  
Zhiguo Tang ◽  
...  

Objective. The objective of this study was to investigate the involved mechanisms of advanced glycation end product- (AGE-) exacerbated atherosclerosis (AS). Methods. Toll-like receptor 4 (TLR4) inhibitor was administrated to type 2 diabetes mellitus (T2DM) AS rats. Atherosclerotic plaque, M1 macrophage infiltration, and VSMCs phenotypes were evaluated. AGE-exposed primary macrophages were treated with specific siRNAs knocking down receptor for AGEs (RAGE) and TLR4. Phenotypes of M1 macrophage and VSMCs were identified by fluorescent stains. Contact and noncontact coculture models were established. VSMCs and macrophages were cocultured in these models. ELISA was used to detect inflammatory cytokine concentrations. Relative mRNA expression levels were determined by real-time PCR. Relative protein expression and phosphorylation levels were evaluated by Western blots assays. Results. TLR4 inhibitor treatment significantly reduced arterial stenosis, infiltration of M1 polarized macrophages, and contractile-to-synthetic phenotype conversion of VSMCs in DM AS animals. RAGE and TLR4 silencing dramatically reduced AGE-induced macrophage M1 polarization, inflammatory cytokine secretion, and RAGE/TLR4/forkhead box protein C2 (FOXC2)/signaling which inhibited delta-like ligand 4 (Dll4) expression in macrophages. AGE-treated macrophages induced VSMC phenotypic conversion via activating Notch pathway in a contact coculture model rather than a noncontact model. The VSMC phenotypic conversion induction capability of macrophages was attenuated by RAGE and TLR4 silencing. Conclusions. AGEs induced activation of RAGE/TLR4/FOXC2 signaling, which featured macrophage with Dll4 high expression during M1 polarization. These macrophages promoted contractile-synthetic phenotypic conversion of VSMCs through the Dll4/Notch pathway after direct cell-to-cell contacts.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Georgios Theocharidis ◽  
Beena E. Thomas ◽  
Debasree Sarkar ◽  
Hope L. Mumme ◽  
William J. R. Pilcher ◽  
...  

AbstractDiabetic foot ulceration (DFU) is a devastating complication of diabetes whose pathogenesis remains incompletely understood. Here, we profile 174,962 single cells from the foot, forearm, and peripheral blood mononuclear cells using single-cell RNA sequencing. Our analysis shows enrichment of a unique population of fibroblasts overexpressing MMP1, MMP3, MMP11, HIF1A, CHI3L1, and TNFAIP6 and increased M1 macrophage polarization in the DFU patients with healing wounds. Further, analysis of spatially separated samples from the same patient and spatial transcriptomics reveal preferential localization of these healing associated fibroblasts toward the wound bed as compared to the wound edge or unwounded skin. Spatial transcriptomics also validates our findings of higher abundance of M1 macrophages in healers and M2 macrophages in non-healers. Our analysis provides deep insights into the wound healing microenvironment, identifying cell types that could be critical in promoting DFU healing, and may inform novel therapeutic approaches for DFU treatment.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Young-Il Kim ◽  
Kwang-Min Yu ◽  
June-Young Koh ◽  
Eun-Ha Kim ◽  
Se-Mi Kim ◽  
...  

AbstractWhile the seroprevalence of SARS-CoV-2 in healthy people does not differ significantly among age groups, those aged 65 years or older exhibit strikingly higher COVID-19 mortality compared to younger individuals. To further understand differing COVID-19 manifestations in patients of different ages, three age groups of ferrets are infected with SARS-CoV-2. Although SARS-CoV-2 is isolated from all ferrets regardless of age, aged ferrets (≥3 years old) show higher viral loads, longer nasal virus shedding, and more severe lung inflammatory cell infiltration, and clinical symptoms compared to juvenile (≤6 months) and young adult (1–2 years) groups. Furthermore, direct contact ferrets co-housed with the virus-infected aged group shed more virus than direct-contact ferrets co-housed with virus-infected juvenile or young adult ferrets. Transcriptome analysis of aged ferret lungs reveals strong enrichment of gene sets related to type I interferon, activated T cells, and M1 macrophage responses, mimicking the gene expression profile of severe COVID-19 patients. Thus, SARS-CoV-2-infected aged ferrets highly recapitulate COVID-19 patients with severe symptoms and are useful for understanding age-associated infection, transmission, and pathogenesis of SARS-CoV-2.


2022 ◽  
Vol 12 ◽  
Author(s):  
Zhenya Guo ◽  
Junze Chen ◽  
Yonglian Zeng ◽  
Zefeng Wang ◽  
Mei Yao ◽  
...  

Background and AimsCholestatic liver injury (CLI), which is associated with inflammatory reactions and oxidative stress, is a serious risk factor for postoperative complications. Complement system is involved in a wide range of liver disorders, including cholestasis. The present study assessed the role of complement in CLI and the therapeutic effect of the site-targeted complement inhibitor CR2-Crry in CLI.MethodsWild-type and complement gene deficient mice underwent common bile duct ligation (BDL) to induce CLI or a sham operation, followed by treatment with CR2-Crry or GdCl3. The roles of complement in CLI and the potential therapeutic effects of CR2-Crry were investigated by biochemical analysis, flow cytometry, immunohistochemistry, ELISA, and quantitative RT-PCR.ResultsC3 deficiency and CR2-Crry significantly reduced liver injuries in mice with CLI, and also markedly decreasing the numbers of neutrophils and macrophages in the liver. C3 deficiency and CR2-Crry also significantly reduced neutrophil expression of Mac-1 and liver expression of VCAM-1. More importantly, C3 deficiency and CR2-Crry significantly inhibited M1 macrophage polarization in these mice. Intravenous injection of GdCl3 inhibited macrophage infiltration and activation in the liver. However, the liver injury increased significantly. BDL significantly increased the level of lipopolysaccharide (LPS) in portal blood, but not in peripheral blood. GdCl3 significantly increased LPS in peripheral blood, suggesting that macrophages clear portal blood LPS. Oral administration of ampicillin to in GdCl3 treated mice reduced LPS levels in portal blood and alleviated liver damage. In contrast, intraperitoneal injection LPS increased portal blood LPS and reversed the protective effect of ampicillin. Interestingly, C3 deficiency did not affect the clearance of LPS.ConclusionsComplement is involved in CLI, perhaps mediating the infiltration and activation of neutrophils and macrophage M1 polarization in the liver. C3 deficiency and CR2-Crry significantly alleviated CLI. Inhibition of complement could preserve the protective function of macrophages in clearing LPS, suggesting that complement inhibition could be useful in treating CLI.


Author(s):  
Kun Liu ◽  
Xin Luo ◽  
Zhao-Yong Lv ◽  
Yu-Jue Zhang ◽  
Zhen Meng ◽  
...  

The effective healing of a bone defect is dependent on the careful coordination of inflammatory and bone-forming cells. In the current work, pro-inflammatory M1 and anti-inflammatory M2 macrophages were co-cultured with primary murine bone mesenchymal stem cells (BMSCs), in vitro, to establish the cross-talk among polarized macrophages and BMSCs, and as well as their effects on osteogenesis. Meanwhile, macrophages influence the osteogenesis of BMSCs through paracrine forms such as exosomes. We focused on whether exosomes of macrophages promote osteogenic differentiation. The results indicated that M1 and M2 polarized macrophage exosomes all can promote osteogenesis of BMSCs. Especially, M1 macrophage-derived exosomes promote osteogenesis of BMSCs through microRNA-21a-5p at the early stage of inflammation. This research helps to develop an understanding of the intricate interactions among BMSCs and macrophages, which can help to improve the process of bone healing as well as additional regenerative processes by local sustained release of exosomes.


2022 ◽  
Vol 11 (1) ◽  
pp. 251
Author(s):  
Shu Kato ◽  
Yasuhiro Sakai ◽  
Asako Okabe ◽  
Yoshiaki Kawashima ◽  
Kazuhiko Kuwahara ◽  
...  

Sarcoidosis is a rare disease of isolated or diffuse granulomatous inflammation. Although any organs can be affected by sarcoidosis, cardiac sarcoidosis is a fatal disorder, and it is crucial to accurately diagnose it to prevent sudden death due to dysrhythmia. Although endomyocardial biopsy is invasive and has limited sensitivity for identifying granulomas, it is the only modality that yields a definitive diagnosis of cardiac sarcoidosis. It is imperative to develop novel pathological approaches for the precise diagnosis of cardiac sarcoidosis. Here, we aimed to discuss commonly used diagnostic criteria for cardiac sarcoidosis and to summarize useful and novel histopathologic criteria of cardiac sarcoidosis. While classical histologic observations including noncaseating granulomas and multinucleated giant cells (typically Langhans type) are the most important findings, others such as microgranulomas, CD68+ CD163− pro-inflammatory (M1) macrophage accumulation, CD4/CD8 T-cell ratio, Cutibacterium acnes components, lymphangiogenesis, confluent fibrosis, and fatty infiltration may help to improve the sensitivity of endomyocardial biopsy for detecting cardiac sarcoidosis. These novel histologic findings are based on the pathology of cardiac sarcoidosis. We also discussed the principal histologic differential diagnoses of cardiac sarcoidosis, such as tuberculosis myocarditis, fungal myocarditis, giant cell myocarditis, and dilated cardiomyopathy.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yan Zhang ◽  
Gui-hui Tong ◽  
Xu-Xuan Wei ◽  
Hai-yang Chen ◽  
Tian Liang ◽  
...  

Background: Breast cancer is one of the deadly tumors in women, and its incidence continues to increase. This study aimed to identify novel therapeutic molecules using RNA sequencing (RNA-seq) data of breast cancer from our hospital.Methods: 30 pairs of human breast cancer tissue and matched normal tissue were collected and RNA sequenced in our hospital. Differentially expressed genes (DEGs) were calculated with raw data by the R package “edgeR”, and functionally annotated using R package “clusterProfiler”. Tumor-infiltrating immune cells (TIICs) were estimated using a website tool TIMER 2.0. Effects of key genes on therapeutic efficacy were analyzed using RNA-seq data and drug sensitivity data from two databases: the Cancer Cell Line Encyclopedia (CCLE) and the Cancer Therapeutics Response Portal (CTRP).Results: There were 2,953 DEGs between cancerous and matched normal tissue, as well as 975 DEGs between primary breast cancer and metastatic breast cancer. These genes were primarily enriched in PI3K-Akt signaling pathway, calcium signaling pathway, cAMP signaling pathway, and cell cycle. Notably, CD8+ T cell, M0 macrophage, M1 macrophage, regulatory T cell and follicular helper T cell were significantly elevated in cancerous tissue as compared with matched normal tissue. Eventually, we found five genes (GALNTL5, MLIP, HMCN2, LRRN4CL, and DUOX2) were markedly corelated with CD8+ T cell infiltration and cytotoxicity, and associated with therapeutic response.Conclusion: We found five key genes associated with tumor progression, CD8+ T cell and therapeutic efficacy. The findings would provide potential molecular targets for the treatment of breast cancer.


2022 ◽  
Vol 20 (4) ◽  
pp. 71-78
Author(s):  
E. S. Trofimova ◽  
M. V. Zykova ◽  
M. G. Danilets ◽  
A. A. Ligacheva ◽  
E. Yu. Sherstoboev ◽  
...  

Background. Antigen-presenting cells (APCs), especially macrophages, play an important role in the body defense against various pathogens. Their dysfunction and polarization are associated with most inflammatory and autoimmune diseases. The inflammatory process is regulated by activation and / or inhibition of genes differentially expressed by macrophages. Successful correction of inflammation leads firstly to elimination of inflammatory stimuli and then to remodeling and restoration of tissues and organs. It was experimentally confirmed that silvercontaining bionanocomposites based on natural humic substances (HS) obtained from coal of different origin, as well as initial matrices of these HS, are capable of activating pro- and anti-inflammatory properties of macrophages.Aim. To study cytotoxic, pyrogenic, and immunomodulatory properties (arginine balance) of initial HS samples and samples of silver nanoparticles ultradispersed in these HS matrices (HS-AgNPs) in the cell culture of peritoneal macrophages, as well as their effect on pro- and anti-inflammatory properties of APCs.Materials and methods. Cultural and biochemical methods were used in the study.Results. The study showed that the samples CHE-K, CHE-AgNPs, CHS-K, and CHP-K increased M1 macrophage polarization due to stimulation of the NO-synthase activity and inhibition of arginase. The samples CHI-K, CHIAgNPs, CHP-AgNPs, and CHS-AgNPs modulated an alternative M2 or M2-like state of macrophage activation. At the same time, HS are not cytotoxic at effective concentrations, and three out of four studied samples did not contain pyrogenic impurities.Conclusion. The use of HS and their silver-containing bionanocomposites, which have the ability to greatly affect the polarization of antigen-presenting cells, is a promising research area in correction of the inflammatory response for solving an important social and medical problem of treating chronic wounds. 


Sign in / Sign up

Export Citation Format

Share Document