massive cell
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 15)

H-INDEX

15
(FIVE YEARS 2)

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 197
Author(s):  
Daria A. Zharova ◽  
Alexandra N. Ivanova ◽  
Irina V. Drozdova ◽  
Alla I. Belyaeva ◽  
Olga N. Boldina ◽  
...  

The microalga Haematococcus lacustris (formerly H. pluvialis) is able to accumulate high amounts of the carotenoid astaxanthin in the course of adaptation to stresses like salinity. Technologies aimed at production of natural astaxanthin for commercial purposes often involve salinity stress; however, after a switch to stressful conditions, H. lacustris experiences massive cell death which negatively influences astaxanthin yield. This study addressed the possibility to improve cell survival in H. lacustris subjected to salinity via manipulation of the levels of autophagy using AZD8055, a known inhibitor of TOR kinase previously shown to accelerate autophagy in several microalgae. Addition of NaCl in concentrations of 0.2% or 0.8% to the growth medium induced formation of autophagosomes in H. lacustris, while simultaneous addition of AZD8055 up to a final concentration of 0.2 µM further stimulated this process. AZD8055 significantly improved the yield of H. lacustris cells after 5 days of exposure to 0.2% NaCl. Strikingly, this occurred by acceleration of cell growth, and not by acceleration of aplanospore formation. The level of astaxanthin synthesis was not affected by AZD8055. However, cytological data suggested a role of autophagosomes, lysosomes and Golgi cisternae in cell remodeling during high salt stress.


2021 ◽  
Vol 14 (3) ◽  
pp. 1721-1729
Author(s):  
Giorgio Attinà ◽  
Raffaele Tepedino ◽  
Antonio Ruggiero

Tumor lysis syndrome (TLS) can be a life-threatening complication that occurs following the onset of chemotherapy treatment, most commonly in association with high-grade lymphoproliferative pathologies such as acute lymphoblastic leukemia and Burkitt lymphoma. The massive cell lysis caused by cytotoxic therapy leads to the rapid release in the blood of intracelullary products and the onset of severe metabolic and electrolytic complications (hyperkalemia, hyperphosphatemia, hypocalcemia and hyperuricemia) upto the acute renal failure. This article describes the incidence and pathophysiological basis of TLS, focusing on the new therapeutic strategies implemented over the last few years, especially with regard to the treatment of hyperuricemia. In particular, it highlights the characteristics of a recent drug, Rasburicase, as a safe and effective alternative, compared to traditional allopurinol therapy, for prophylaxis and treatment of children with hyperuricemia induced by chemotherapy.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ken-ichi Hirano ◽  
Hiroyuki Hosokawa ◽  
Maria Koizumi ◽  
Yusuke Endo ◽  
Takashi Yahata ◽  
...  

Notch signaling primarily determines T-cell fate. However, the molecular mechanisms underlying the maintenance of T-lineage potential in pre-thymic progenitors remain unclear. Here, we established two murine Ebf1-deficient pro-B cell lines, with and without T-lineage potential. The latter expressed lower levels of Lmo2; their potential was restored via ectopic expression of Lmo2. Conversely, the CRISPR/Cas9-mediated deletion of Lmo2 resulted in the loss of the T-lineage potential. Introduction of Bcl2 rescued massive cell death of Notch-stimulated pro-B cells without efficient LMO2-driven Bcl11a expression but was not sufficient to retain their T-lineage potential. Pro-B cells without T-lineage potential failed to activate Tcf7 due to DNA methylation; Tcf7 transduction restored this capacity. Moreover, direct binding of LMO2 to the Bcl11a and Tcf7 loci was observed. Altogether, our results highlight LMO2 as a crucial player in the survival and maintenance of T-lineage potential in T-cell progenitors via the regulation of the expression of Bcl11a and Tcf7.


2021 ◽  
Vol 11 ◽  
Author(s):  
Benedikt Linder ◽  
Abigail Schiesl ◽  
Martin Voss ◽  
Franz Rödel ◽  
Stephanie Hehlgans ◽  
...  

PurposeDexamethasone (Dex) is the most common corticosteroid to treat edema in glioblastoma (GBM) patients. Recent studies identified the addition of Dex to radiation therapy (RT) to be associated with poor survival. Independently, Tumor Treating Fields (TTFields) provides a novel anti-cancer modality for patients with primary and recurrent GBM. Whether Dex influences the efficacy of TTFields, however, remains elusive.MethodsHuman GBM cell lines MZ54 and U251 were treated with RT or TTFields in combination with Dex and the effects on cell counts and cell death were determined via flow cytometry. We further performed a retrospective analysis of GBM patients with TTFields treatment +/- concomitant Dex and analysed its impact on progression-free (PFS) and overall survival (OS).ResultsThe addition of Dex significantly reduced the efficacy of RT in U251, but not in MZ54 cells. TTFields (200 kHz/250 kHz) induced massive cell death in both cell lines. Concomitant treatment of TTFields and Dex did not reduce the overall efficacy of TTFields. Further, in our retrospective clinical analysis, we found that the addition of Dex to TTFields therapy did not influence PFS nor OS.ConclusionOur translational investigation indicates that the efficacy of TTFields therapy in patients with GBM and GBM cell lines is not affected by the addition of Dex.


2021 ◽  
Vol 25 (3) ◽  
pp. 292-300
Author(s):  
N. V. Dorogova ◽  
A. E. Zubkova ◽  
E. V. Fedorova ◽  
E. U. Bolobolova ◽  
E. M. Baricheva

Drosophila protein GAGA (GAF) is a factor of epigenetic transcription regulation of a large group of genes with a wide variety of cellular functions. GAF is encoded by the Trithorax-like (Trl) gene, which is important for the formation of various organs and tissues at all stages of ontogenesis. In our previous works, we showed that this protein is necessary for the development of the reproductive system, both in males and females of Drosophila. Decreased expression of the Trl gene led to multiple disorders of spermatogenesis and oogenesis. One of the significant disorders was associated with massive degradation and loss of cells in the germline. In this work, we carried out a more detailed cytological study to determine what type of germ cell death is characteristic of Trl mutants, and whether there are disturbances or changes in this process compared to the norm. The results obtained showed that the lack of GAF protein causes massive germ cell death in both females and males of Drosophila, but this death manifests itself in different ways, depending on the sex. In Trl females, this process does not differ phenotypically from the norm. In the dying egg chambers, signs of apoptosis and autophagy were revealed, as well as morphological features that are characteristic of the wild type. In males, Trl mutations induce mass germ cell death through autophagy, which is not typical of Drosophila spermatogenesis, and has not been previously described, neither in the norm nor in other genes’ mutations. Thus, GAF lack in Trl mutants leads to increased germ cell death through apoptosis and autophagy. Ectopic cell death and germ line atrophy are probably associated with impaired expression of the GAGA factor target genes, among which there are genes that regulate both apoptosis and autophagy.


2021 ◽  
Author(s):  
Liping Wang ◽  
Huang Tan ◽  
Laura Medina-Puche ◽  
Mengshi Wu ◽  
Borja Garnelo Gomez ◽  
...  

As intracellular parasites, viruses need to manipulate the molecular machinery of their host cells in order to enable their own replication and spread. This manipulation is based on the activity of virus-encoded proteins. The reduced size of viral genomes imposes restrictions in coding capacity; how the action of the limited number of viral proteins results in the massive cell reprogramming observed during the viral infection is a long-standing conundrum in virology. In this work, we explore the hypothesis that combinatorial interactions expand the multifunctionality of viral proteins, which may exert different activities individually and when in combination, physical or functional. We show that the proteins encoded by a plant-infecting DNA virus physically associate with one another in an intricate network. Our results further demonstrate that these interactions can modify the subcellular localization of the viral proteins involved, and that co-expressed interacting viral proteins can exert novel biological functions in planta that go beyond the sum of their individual functions. Based on this, we propose a model in which combinatorial physical and functional interactions between viral proteins enlarge the functional landscape of the viral proteome, which underscores the importance of studying the role of viral proteins in the context of the infection.


Author(s):  
Natalia V. Dorogova ◽  
Yuliya A. Galimova ◽  
Elena Us. Bolobolova ◽  
Elina M. Baricheva ◽  
Svetlana A. Fedorova

Author(s):  
Jorge Blázquez-Prieto ◽  
Covadonga Huidobro ◽  
Inés López-Alonso ◽  
Laura Amado-Rodriguez ◽  
Paula Martín-Vicente ◽  
...  

AbstractThe p53/p21 pathway is activated in response to cell stress. However, its role in acute lung injury has not been elucidated. Acute lung injury is associated with disruption of the alveolo-capillary barrier leading to acute respiratory distress syndrome (ARDS). Mechanical ventilation may be necessary to support gas exchange in patients with ARDS, however, high positive airway pressures can cause regional overdistension of alveolar units and aggravate lung injury. Here, we report that acute lung injury and alveolar overstretching activate the p53/p21 pathway to maintain homeostasis and avoid massive cell apoptosis. A systematic pooling of transcriptomic data from animal models of lung injury demonstrates the enrichment of specific p53- and p21-dependent gene signatures and a validated senescence profile. In a clinically relevant, murine model of acid aspiration and mechanical ventilation, we observed changes in the nuclear envelope and the underlying chromatin, DNA damage and activation of the Tp53/p21 pathway. Absence of Cdkn1a decreased the senescent response, but worsened lung injury due to increased cell apoptosis. Conversely, treatment with lopinavir/ritonavir led to Cdkn1a overexpression and ameliorated cell apoptosis and lung injury. The activation of these mechanisms was associated with early markers of senescence, including expression of senescence-related genes and increases in senescence-associated heterochromatin foci in alveolar cells. Autopsy samples from lungs of patients with ARDS revealed increased senescence-associated heterochromatin foci. Collectively, these results suggest that acute lung injury activates p53/p21 as an anti-apoptotic mechanism to ameliorate damage, but with the side effect of induction of senescence.


Sign in / Sign up

Export Citation Format

Share Document